Difference between revisions of "Resonant Polarimeter"

From Ciswikidb
Jump to navigation Jump to search
 
Line 115: Line 115:
  
 
= References =
 
= References =
* ''Lorentz Transform of an Arbitrary Force Field on a Particle in its Rest Frame using the Hamilton-Lagrangian Formalism''
 
C. Tschalär, MIT-Bates technical note, B/IR#15-01, September, 2015; updated June, 2016: [[media:Tschalär MIT-Bates technical note B/IR 15_01.pdf]]
 
  
 
* ''RF resonant beam polarimetry: Analysis using quantized operators''  
 
* ''RF resonant beam polarimetry: Analysis using quantized operators''  

Latest revision as of 15:13, 25 September 2018

Resonant polarimetry, first proposed by Derbenev in 1993, measures the spin-dependent energy deposited by a beam in cavity via the Stern-Gerlach interaction. This technique of fast non-destructive measurement of beam polarization has been never demonstrated experimentally. We are planning a proof-of-principle test using polarized electrons and a room temperature copper cavity.


 Phone number: 1-888-240-2560
 Meeting ID: 149332993#
 Meeting URL: http://bluejeans.com/149332993

Meetings and Discussion

2018



2017

  • General Particle Tracer (GPT) Simulations of Proposed Stern-Gerlach Experiment Layout (March 29, 2017) media:170329_Hofler.pdf



2016

  • Sateesh Mane, "Relativistic Stern-Gerlach Deflection: Hamiltonian Formulation", arXiv:1611.07326v1 [Accelerator Physics] (November 22, 2016): [1] media:1611.07326v1.pdf
  • Richard Talman's final Spin 2016 paper (November 16, 2016):
media:Talman_Spin2016-paper_final_16Nov2016.pdf
A theoretical paper, arXiv:1611.03810v1 [Accelerator Physics] : [2] media:RelativisticStern-Gerlach_16Nov2016.pdf
  • Richard Talman's talk at SPIN 2016: [4]
  • Richard Talman, The CEBAF Injection Line as Stern-Gerlach Polarimeter, Spin 2016 Conference (September 22, 2016):
Abstract: media:Talman_SG_Polarimeter_Spin2016_abstract.txt
Paper: media:Talman_SG_Polarimeter_Spin2016.pdf
Beam Position Monitors (Peter Forck, Piotr Kowina, Dmitry Liakin - GSI, Darmstadt, Germany): media:Cas_bpm_main.pdf

References

  • RF resonant beam polarimetry: Analysis using quantized operators

S. R. Mane and W. W. MacKay, Nucl. Inst. Meth. A 875, 165 (2017): media:NuclInstMethA.875.165.pdf [5]

  • A critical analysis of the technique of spin tune mapping in storage rings

S. R. Mane, Nucl. Inst. Meth. A 875, 141 (2017): media:NuclInstMethA.875.141.pdf [6]

  • On Stern-Gerlach forces allowed by special relativity and the special case of the classical spinning particle of Derbenev-Kondratenko

K. Heinemann, arXiv:9611001v1 [physics] (July 22, 2013): [7] media:9611001.pdf

  • Stern-Gerlach Forces and Spin Splitters

D. P. Barber, AIP Conf. Proc. 1008, 56 (2008) (29–31 August 2007): [8] media:Barber_SG_1.2932267.pdf

  • Polarization kinetics of particles in storage rings

Ya. S. Derbenev, A.M. Kondratenko, Sov. Phys. JETP, 37, p.968 (1973): [9] media:e_037_06_0968.pdf

  • The Stern-Gerlach interaction between a traveling particle and a time varying magnetic field

M. Conte, M. Ferro, G. Gemme, W.W. MacKay, R. Parodi, M. Pusterla, arXiv:0003069v1 [physics] (March 24, 2000): [10] media:arXiv_physics_0003069v1.pdf

  • Relativistic Stern-Gerlach Interaction in an RF Cavity

M. Conte, A. U. Luccio, and M. Pusterla, arXiv:physics/0907.2161v1 (February 22, 2013): [11] media:arXiv_physics_0907.2161v1.pdf

  • RF-resonance beam polarimeter Part I. Fundamental concepts

Ya. S. Derbenev, Nucl. Inst. Meth. A 336, 12 (1993): [12] media:NuclInstMethA.336.12.pdf

  • Lorentz Transform of an Arbitrary Force Field Acting on a Particle in its Rest Frame, using the Hamilton-Lagrangian Formalism

C. Tschalär, BIR#15-01, Bates Lab Report (June 24, 2016): media:Tschaller_Tech_Note_B-IR.pdf

  • Proposal for a cavity polarimeter at MIT-Bates

P. Cameron et al., Proceedings of the Particle Accelerator Conference, Chicago (2001): [13] media:BATES_PAC2001.00987396.pdf

  • Measuring the intensity and position of a pA electron beam with resonant cavities

Thorsten R. Pusch, F. Frommberger, W. C. A. Hillert, and B. Neff, Phys. Rev. ST Accel. Beams 15, 112801 (2012): [14] media:PhysRevSTAB.15.112801.pdf

  • Single-Shot MeV Transmission Electron Microscopy with Picosecond Temporal Resolution

R. K. Li and P. Musumeci, Phys. Rev. Applied 2, 024003 (2014): [15] media:PhysRevApplied.2.024003.pdf

  • Development of a high-resolution cavity-beam position monitor

Y. Inoue et al., Phys. Rev. ST Accel. Beams 11, 062801 (2008): [16] media:PhysRevSTAB.11.062801.pdf

  • Performance of a high resolution cavity beam position monitor system

S. Walston, Nucl. Inst. Meth A 578, 1 (2008): [17] media:NuclInstMethA.578.1.pdf

  • Development of a cavity-type beam position monitor with high resolution for ATF2

S. Jang et al., Proceedings of IPAC2013, Shanghai, China, 2013: media:mopme058.pdf

  • Multiple harmonic frequencies resonant cavity design and half-scale prototype measurements for a fast kicker

Y. Huang et al., Phys. Rev. Accel. Beams 19, 122001 (2016): [18] media:PhysRevAccelBeams.19.122001.pdf

  • Cavity Beam Position Monitors

Ronald Lorenz, DESY Zeuthen, Platanenallee 6, D-15738 Zeuthen: media:lorenz_CBPM.pdf

  • Measuring the intensity and position of a pA electron beam with resonant cavities

T. Pusch et al., Phys. Rev. Accel. Beams 15, 112801 (2012): [19] media:PhysRevSTAB.15.112801.pdf

  • Direct demonstration of the transverse Stern-Gerlach effect

J. Porter, R. F. Pettifer, and D. R. Leadley, American Journal of Physics 71, 1103 (2003): [20] media:AmericanJourPhys.71.1103.pdf