Thesis outline

From Ciswikidb
Revision as of 01:16, 29 May 2020 by Sajini (talk | contribs)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Introduction

  • Magnetized electron beam
  • Applications of the magnetized electron beam
    • Magnetized electron cooling
  • Jefferson Lab magnetized electron source for the JLEIC cooler


Generation of the magnetized electron beam

  • Experimental setup (DC HV gun, photocathode, cathode solenoid, RF laser, focusing solenoids, etc.)
  • Beam diagnostics


Beam dynamics

  • Beam matrix
  • Phase space
  • Emittance (thermal, phase space, geometric)
  • Effective(drift) emittance (emittance of the magnetized beam)
  • Measuring the beam emittance


Space charge effect

  • Space charge effect in the magnetized beam

Simulations on the magnetized electron beam

  • ASTRA
    • Initial particle distribution
    • Field maps (3D E field map, 2D B field map)
    • Space charge calculation mechanism
    • Emittance
  • GPT
    • Initial particle distribution (Laser*QE image processing)
    • Field maps (3D E field map, 2D B field map)
    • Space charge calculation mechanism
    • Emittance
  • Post-processing (MATLAB)

Characterization of the magnetized beam

  • Experimental method
    • Beam size vs solenoid I
    • Rotation angle vs solenoid I
    • Emittance vs solenoid I - two different laser sizes
    • Emittance vs laser spot sizes - max solenoid current
  • ASTRA/GPT simulations (Simulation of all the above variations)
  • Conclusions (comparisons -measurements vs simulations, mismatch oscillations, negative rotation angles, etc.)


Experiments and numerical simulations of the space charge dominated magnetized beam

  • Experimental methods
    • Pulse energy vs extracted charge-for different magnetizations
    • Space charge current limitation dependence on gun high voltage-for different magnetizations
    • Space charge current limitation dependence on pulse width-for different magnetizations
    • Space charge current limitation dependence on laser spot size-for different magnetizations
  • GPT simulations
  • Conclusions (Comparison-measurements and simulations)


Redesigning and performance of the photogun

  • Existing electrostatic design
  • Modified electrostatic design
  • Polishing and gun assembly
  • High voltage conditioning


Repeated experimental and numerical simulations results of the space charge dominated magnetized beam with the new photogun

Summary and Conclusions

Return to Sajini Wijethunga