Thesis outline

From Ciswikidb
Revision as of 02:32, 29 May 2020 by Sajini (talk | contribs)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Introduction

  • Magnetized electron beam
  • Applications of the magnetized electron beam
    • Magnetized electron cooling
  • Jefferson Lab magnetized electron source for the JLEIC cooler

Generation of the magnetized electron beam

  • Experimental setup (DC HV gun, photocathode, cathode solenoid, RF laser, focusing solenoids, etc.)
  • Beam diagnostics

Beam dynamics

  • Beam matrix
  • Phase space
  • Emittance (thermal, phase space, geometric)
  • Effective(drift) emittance (emittance of the magnetized beam)
  • Measuring the beam emittance

Space charge effect

  • Space charge effect in the magnetized beam

Simulations on the magnetized electron beam

ASTRA

    • Initial particle distribution
    • Field maps (3D E field map, 2D B field map)
    • Space charge calculation mechanism
    • Emittance

GPT

    • Initial particle distribution (Laser*QE image processing)
    • Field maps (3D E field map, 2D B field map)
    • Space charge calculation mechanism
    • Emittance

Post-processing (MATLAB)

Characterization of the magnetized beam

Experimental method

    • Beam size vs solenoid I
    • Rotation angle vs solenoid I
    • Emittance vs solenoid I - two different laser sizes
    • Emittance vs laser spot sizes - max solenoid current

ASTRA/GPT simulations (Simulation of all the above variations)

  • Conclusions (comparisons -measurements vs simulations, mismatch oscillations, negative rotation angles, etc.)

Experiments and numerical simulations of the space charge dominated magnetized beam

Experimental method

    • Pulse energy vs extracted charge-for different magnetizations
    • Space charge current limitation dependence on gun high voltage-for different magnetizations
    • Space charge current limitation dependence on pulse width-for different magnetizations
    • Space charge current limitation dependence on laser spot size-for different magnetizations

GPT simulations

  • Conclusions (Comparison-measurements and simulations)

Redesigning and performance of the photogun

  • Existing electrostatic design
  • Modified electrostatic design
  • Polishing and gun assembly
  • High voltage conditioning

Repeated experimental and numerical simulations results of the space charge dominated magnetized beam with the new photogun

Summary and Conclusions

Return to Sajini Wijethunga