Difference between revisions of "Engineering Run"

From clas12-run
Jump to: navigation, search
(Short Term Schedule)
(Short Term Schedule)
 
(530 intermediate revisions by 7 users not shown)
Line 18: Line 18:
 
* [https://wiki.jlab.org/clas12-run/images/d/d2/Ltcc_manual.pdf LTCC]
 
* [https://wiki.jlab.org/clas12-run/images/d/d2/Ltcc_manual.pdf LTCC]
 
* [https://clasweb.jlab.org/wiki/images/f/f1/HTCC_MANUAL.pdf HTCC]
 
* [https://clasweb.jlab.org/wiki/images/f/f1/HTCC_MANUAL.pdf HTCC]
* [https://clasweb.jlab.org/wiki/images/e/ea/RICH_Manual.pdf RICH]
+
* RICH: [https://clasweb.jlab.org/wiki/images/e/ea/RICH_Manual.pdf expert] [https://wiki.jlab.org/clas12-run/images/d/d9/RICH_Controls_mc.pdf novice]
 
* [https://clasweb.jlab.org/wiki/images/0/0f/Ctof_manual.pdf CTOF]
 
* [https://clasweb.jlab.org/wiki/images/0/0f/Ctof_manual.pdf CTOF]
 
* [https://clasweb.jlab.org/wiki/images/9/97/Ops_manual_cnd.pdf CND]
 
* [https://clasweb.jlab.org/wiki/images/9/97/Ops_manual_cnd.pdf CND]
 
* [https://clasweb.jlab.org/wiki/images/9/96/Svt_operation_manual_v1_1.pdf  SVT]
 
* [https://clasweb.jlab.org/wiki/images/9/96/Svt_operation_manual_v1_1.pdf  SVT]
 
* [https://clasweb.jlab.org/wiki/images/a/ad/Documentation_Shifters_MVT.pdf MVT]
 
* [https://clasweb.jlab.org/wiki/images/a/ad/Documentation_Shifters_MVT.pdf MVT]
 +
<!--===** [https://wiki.jlab.org/clas12-run/images/b/bf/MVT_for_Dummies.pdf MVT turn-on procedure]===-->
 +
** [https://wiki.jlab.org/clas12-run/images/2/2d/MVT_for_Dummies_noFMT.pdf MVT turn on procedure]
 
* [https://clasweb.jlab.org/wiki/images/3/3b/FT-Manual.pdf FT]
 
* [https://clasweb.jlab.org/wiki/images/3/3b/FT-Manual.pdf FT]
 
* [https://clasweb.jlab.org/wiki/images/4/4d/Beamline_manual.pdf Beamline]
 
* [https://clasweb.jlab.org/wiki/images/4/4d/Beamline_manual.pdf Beamline]
Line 65: Line 67:
 
<!--#######################################  SHORT TERM  ################################################-->
 
<!--#######################################  SHORT TERM  ################################################-->
 
<center><font color=blue size=4>
 
<center><font color=blue size=4>
''' CLAS12 Engineering Run, Fall 2017 </font> '''<br>
+
''' CLAS12 Engineering Run, Winter 2018 </font> '''<br>
 
''' Beam energy 10.6 GeV (5 pass) '''<br>
 
''' Beam energy 10.6 GeV (5 pass) '''<br>
 
''' Important: Document all your work in the logbook! '''<br>
 
''' Important: Document all your work in the logbook! '''<br>
<!--<font size=3>[https://bluejeans.com/573852742 Bluejeans for Run Meetings on Thursdays and Fridays at 2pm]</font></center>-->
+
''' Remember to fill in the [https://docs.google.com/spreadsheets/d/1frfBlq51qDXZD6fW5rcRefNXSGdVvdMozKUlAVNoUGc/edit?usp=sharing run list] at the beginning and end of each run (clas12run@gmail.com can fill the run list)'''<br>
 
</center>
 
</center>
  
== RC: Raffaella DeVita ==
+
== RC: Silvia Niccolai ==
* (757) 575-7540
+
* (757) 575-7540
 
* 9 575 7540 from Counting Room
 
* 9 575 7540 from Counting Room
* devita@jlab.org
+
* silvia@jlab.org
  
== PDL: Eugene Pasyuk ==
+
== PDL: Maurizio Ungaro ==
 
*  (757) 876-1789  
 
*  (757) 876-1789  
 
* 9 876-1789 from Counting Room
 
* 9 876-1789 from Counting Room
* pasyuk@jlab.org
+
* ungaro@jlab.org
  
{| {{TableStyle1}}
+
<br>
  
| valign=top width=50% |
+
* Note 1: Be very mindful of the background rates in the halo counters, rates in the detectors, and currents in the SVT for all settings to ensure that they are at safe levels.
  
== <font color=blue>''' Run Plan: beamline commissioning'''</font>==
+
* Note 2: At the end of each run, follow the DAQ restart sequence "end run", "abort", "reset", "download", "prestart", "go". After DAQ prestart is complete reboot the scaler IOCs with the command: iocjscalerRestartAll.sh. Note: After each step, make sure it is complete in the Run Control message window. If a roc has crashed, find which one it is and issue a roc_reboot command and try again. Contact the DAQ expert if there are any questions.
+
* Whenever preparing to receive beam, make sure the following conditions are established: all CLAS12 detectors are off and target is empty. For SVT, MVT, FTH and FTT, turn first HV off and then LV off. For any problem, consult with the expert-on-call.
+
* Establish beam to the tagger yoke first:
+
*# ask MCC to energize the tagger dipole magnet and set the current as needed for dumping the beam in the designated dump on the tagger yoke. MCC will
+
ask you to change (set) the beam delivery mode.
+
*# position the \blank" collimator on the beam (this is a collimator block, 30 cm long Ni cylinder, without a hole)
+
*# when the tagger magnet is at required setting ask MCC if they are ready to deliver beam to the tagger yoke dump (<=5 nA). It may take ~1 hour for MCC to setup and cleanly transport beam to the tagger yoke dump,
+
*# perform harp scans using the wire harp at 2C21 girder and 2c24 (tagger harp). Beam profile, peak position, width and signal/background ratio should be like in https://logbooks.jlab.org/entry/3502250 and https://logbooks.jlab.org/entry/3502252. Ask MCC
+
to retune if needed (e.g. beam is too wide or asymmetric or has large tails),repeat the scan after every tune. Iterate to get acceptable beam profile.
+
* send the beam to Faraday Cup dump (otherwise known as electron dump).
+
#* CLAS12 detectors should be OFF, the solenoid magnet current is at 50% its max, torus is at 100%.
+
#* ask MCC to degauss and turn the tagger dipole off;
+
#* position 20 mm collimator on the beam and move \Chromox" screen of the downstream viewer in beam position (if it is not already)
+
+
** establish beam to the faraday cup: beam current should be 1.5 nA, positions, quads settings and rates should be as in https://logbooks.jlab.org/entry/3502318;
+
** make sure beam is stable and beam spot is clearly visible on the chromax viewer;
+
** with the support of the beamline expert, set FSD thresholds to trigger the beam shutdown in case rates become too high;
+
** check the effect of the solenoid on the beam position by ramping from the present 50% to 100%: to do that ask E. Pasyuk (PDL phone) to do it or to give you directions; save the snapshot of the main gui in the logbook;
+
** check the effect of the torus on the beam position by ramping from the present 0% to 100%: to do that ask E. Pasyuk (PDL phone) to do it or to give you directions; save the snapshot of the main gui in the logbook;
+
** move the beam position at 2H01 by +/-2 mm in x and y in steps of 0.5 mm to ensure we are reasonably centered at the target; record rates from halo counters and BOM; stop the scan as soon as a significant increase of the rates is detected; while doing this, monitor the SVT leakage currents (detector is off) and make sure the currents do not increase significantly from the no-beam values; define the final beam positions based on the spot with the lowest rates;
+
** turn on the forward carriage detectors: EC, PCAL, FTOF; check rates and record them in the logbook;
+
** start the DAQ (consult with the DAQ expert) and start the online monitoring, CED and CLAS12MON;
+
** prepare to fill the target (consult with Engineering on call).
+
** whenever beam is off but Hall C has beam, checks rates and beam current monitor readings looking for possible bleedthrough.
+
  
<!--
+
* Note 3: Nominal beam positions: '''2C21 (X=0.0 mm, Y=0.0 mm), 2C24 (X=0.0 mm, Y=0.7 mm), 2H01 (X=0.3 mm, Y=-0.6 mm)'''
== The Hall was closed and brought to controlled access at 8pm on Thursday, February 2 ==
+
  
<b> While no beam, cosmic calibration run is in progress with all CLAS12 detectors ON.
+
* Note 4: With beam to the Faraday Cup, typical rates pn all halo counters upstream from the target should be either 0 or of the order of few counts. Count rates in the range of tens or more may indicate bad beam tune or bleed-through from other Halls.
  
When ready to get beam, Turn all beamline devices ON, turn all CLAS12 detectors OFF (including SVT)</b>
+
{| {{TableStyle1}}
  
 +
| valign=top width=50% |
  
== Establish beam to the tagger yoke dump ==
+
== <font color=blue>''' Run Plan:'''</font>==
# Work with MCC to establish beam on the tagger yoke dump - <b>This is the first time we are running to this new dump, record everything, rates in some of halo counters can be away off the chart. Consult with RC if you see something very unusual.  </b>
+
''(last update 2/4 - 14:30)''
# See [[Media:CLAS12_beamline_commissioning.pdf|Beamline Commissioning Plans]] for details, execute 2(a) to 2(g). <b> Note, MCC may use up to 4 uA tune mode beam for short time periods for steering purposes </b>.
+
# Log every harp scan
+
# Log Main scaler GUI every time conditions change
+
# Follow the beam position and current strip charts for 2C21 and 2C24 nA BPMs, make log entry of strip chartes
+
== Bring beam to FC: ==
+
# Establish beam to the Faraday cup following the Beamline Commissioning Plans, execute 2(g) to 2(k). Note, at some point part of CLAS12 calorimeters must be turned on
+
# Log every harp scan
+
# Log Main scaler GUI every time conditions change
+
# Follow the beam position and current strip charts for 2C21 and 2C24 nA BPMs, make log entry of strip charts
+
# Setup FSD if it is day time and beamline expert is present, 2(l) and 2(m), otherwise skip them
+
# Start bringing the CLAS12 detectors ON and do rate studies , 2(n) and 2(o). When moving target in, consult [[Media:Harp_TargetStick.pdf| 2H01 harp stick drawing]] and 2H01 harp scans performed on step 2(k) to define how far you should move the motor to get carbon target on the beam, first bullet of 2(o).
+
<b> At this point call DAQ, EC, DC, and FTOF experts, notify them that beam is ready for data taking</b>
+
-->
+
  
=== Important Notes: ===
+
All studies will take data at 100% torus field (negatives inbending) and 100% solenoid field (positive polarity on supply). The beam position should be as indicated above. Make sure FSD thresholds are set correctly for whatever current is selected (refer to instructions in the "Establish-physics quality beam" procedure at [https://wiki.jlab.org/clas12-run/images/e/e3/Estab_beam.pdf]), integration time is set to 5 ms, and that the orbit locks are on.  
# '''During beam tune and harp scans Hall-B halo FSD must be masked.'''
+
# '''The main lights in the Hall(dome lights) and the Forward Carriage lights are being kept off because of light leaks affecting some of the detectors. If these lights are switched on during an access, they should be switched off when leaving the Hall. Note that the dome lights when switched off cannot be turned back on immediately because they require 10-15 min to cooldown."
+
# '''Do not run more than 60 minutes above 30 nA without the beam blocker in front of Faraday cup. Put beam blocker in for long running at high currents.'''
+
# '''If DAQ crashed/broken: Follow instruction on Documentation tab. If cannot resolved in 20-30 min call DAQ on-call cell phone.'''
+
# '''With any issue contact On-Call Experts or RC - do not spend more than 15-20 min trying to fix the problem.'''
+
  
 +
<!-- * Prepare for beam tuning to the tagger yoke: SVT (contact expert to do it), MVT, CND, CTOF, FTT, HTCC, DC, FTOF should be off, tagger magnet should be on. Follow the instructions in the "Establish-physics quality beam" procedure at [https://wiki.jlab.org/clas12-run/images/e/e3/Estab_beam.pdf]. Compare harp scan to the ones performed on 1/25 swing shift (https://logbooks.jlab.org/entry/3520873 and https://logbooks.jlab.org/entry/3520881). Consult with the beamline expert in case of issues. -->
 +
<!--* If beam profiles at the tagger are acceptable, move to beam tuning to the Faraday Cup. Again, refer to the instructions in the "Establish-physics quality beam" procedure at [https://wiki.jlab.org/clas12-run/images/e/e3/Estab_beam.pdf]. Compare harp scan with the one from 1/25 swing shift (https://logbooks.jlab.org/entry/3520947).  -->
 +
<!--* Once beam to Faraday Cup is established, prepare to start data taking. Switch on all detectors; contact expert to switch on SVT. Start trigger studies following instructions from the DAQ expert. -->
 +
* Take 2 hour data runs with PROD/elec_htcc_1phe_pcal_300.trg at 30 nA with the following DC HV and thresholds:
 +
** R1: #9/-45 mV, R2: #10/-65 mV, R3: #10/-60 mV
 +
** R1: #8/-30 mV, R2: #10/-65 mV, R3: #9/-45 mV
 +
** R1: #8/-30 mV, R2: #9/-45 mV, R3: #9/-45 mV
 +
* Take data at 35 nA with PROD/elec_htcc_1phe_pcal_300.trg until morning; runs should be 2 hrs in length. Use R1: #8/-30 mV, R2: #9/-45 mV, R3: #9/-45 mV
  
| valign=top |
+
* Hall B work for Monday:
 +
** Ramp down solenoid (torus can stay up) (RC)
 +
** Empty the hydrogen target (Hall B Engineering)
 +
** Complete shielding addition outside scattering chamber (Hall B Engineering)
 +
** Restore beamline (Hall B Engineering)
 +
** Replace FT-Hode mezzanine board (N. Zachar)
 +
** Work on DC cable swaps (M. Cook + M. Mestayer)
 +
** Work on vacuum gauge (D. Anderson)
 +
** Investigate polarity of busy signal (S. Boyarinov)
 +
** Setup gated/ungated scalers and clock scalers (S. Boyarinov)
 +
** SAF111 walkthrough (E. Pasyuk)
 +
** Pass change (5-pass to 3-pass)
  
==<font color=blue><b>General Instructions:</b></font>==
+
<!-- == <font color=blue>''' Beam Tuning:'''</font>==
 +
 +
* <b>Whenever preparing to receive beam, make sure the following conditions are established: all CLAS12 detectors are off and target is empty. Turn DC HV off, leaving LV on. For SVT, MVT, FTH and FTT, first turn HV off and then LV off. For any problem, consult with the expert-on-call.</b>
 +
* Establish beam to the tagger yoke first:
 +
*# ask MCC to energize the tagger dipole magnet and set the current as needed for dumping the beam in the designated dump on the tagger yoke. MCC will ask you to change (set) the beam delivery mode.
 +
*# position the "blank" collimator on the beam (this is a collimator block, 30 cm long Ni cylinder, without a hole)
 +
*# when the tagger magnet is at required setting ask MCC if they are ready to deliver beam to the tagger yoke dump (<=5 nA). It may take ~1 hour for MCC to setup and cleanly transport beam to the tagger yoke dump.
 +
*# perform harp scans using the wire harp at 2C21 girder and 2C24 (tagger harp). Beam profile, peak position, width and signal/background ratio should be like in https://logbooks.jlab.org/entry/3507602 and https://logbooks.jlab.org/entry/3507605. Ask MCC to retune if needed (e.g. beam is too wide or asymmetric or has large tails),repeat the scan after every tune. Iterate to get acceptable beam profile.
 +
* Send the beam to Faraday Cup dump:
 +
*# CLAS12 detectors should be OFF, the solenoid magnet current is at 50% its max, torus is at 100%.
 +
*# ask MCC to degauss and turn the tagger dipole off; while the magnet is being degaussed call the beamline expert (S. Stepanyan) to inform him, you are starting the procedure to send the beam to the Faraday Cup;
 +
*# position 20 mm collimator on the beam and move "Chromax" screen of the downstream viewer in beam position (if it is not already)
 +
*# move the beam blocker out: in this configuration beam current readings at 2C24, 2H01 and Faraday Cup should be close.
 +
*# ask for <= 1 nA, positions, quads settings and rates should be as in https://logbooks.jlab.org/entry/3502404; pay particular attention to halo counter rates: if very different from what shown in the link, call MCC and ask them to verify their settings; note that BOM gains were lowered today and rates should be lower (see https://logbooks.jlab.org/entry/3502559).
 +
*# make sure beam is stable, beam spot is clearly visible on the Chromax viewer and current does not exceed 1 nA;
 +
*# repeat harp scans at 2C21, 2C24 (tagger harp) and 2H01: the profile for 2H01 should be as in https://logbooks.jlab.org/entry/3507626. Make sure you select the proper PMT for the analysis. The profile at 2C21 and 2C24 should be as in the scans performed with beam to the tagger magnet yoke dump. If necessary ask MCC to adjust the beam profile at 2H01 to match the previous scan.
  
 
+
When ready to get beam, turn all beamline devices ON, turn all CLAS12 detectors OFF
<!--
+
# For every daq crash login into clondaq3 as a clasrun then run the following command
+
#* clasrun@clondaq3:clasrun> <font color='blue'> save_DAQ_logs.pl</font> (See [https://logbooks.jlab.org/files/2016/04/3397123/DAQ_DPM_Crash_0.png])
+
# [https://clonwiki0.jlab.org/wiki/index.php/DAQ/Online_Quick_Reference Reboot DAQ completely].
+
# If the procedure fails to restore DAQ, call Sergey (DAQ on call) without any further disturbing the DAQ status.
+
 
-->
 
-->
=== Locking up the hall  ===
 
* Work with the hall work coordinator (Doug Tilles or his designee) to make sure hall is ready for sweep at around 3pm:
 
** Vacuum is good, magnet power supplies (Tagger and Torus) are turned ON and in remote mode, LCW is on.
 
* Make sure experts, beamline, ECal, DC, HTCC, FTOF, and slow controls, checked their systems before the lockup.
 
* When ready notify MCC to start sweep and lockup of the hall.
 
* Make sure all necessary monitoring GUIs are up and running.
 
* Make sure beam viewer screens are up.
 
* When hall is in "Beam Permit"
 
**  Ramp torus to 10% of max current (380A)
 
** Turn tagger magnet ON if beam tune on the tagger dump or tagger yoke dump will be needed (it will be needed if beam comes back after several hours of down)
 
** Turn all beamline devices ON, turn all CLAS12 detectors OFF
 
  
<!-- ===Establishing Acceptable Beam Conditions:===
+
| valign=top |
# <font color='red'>'''Make sure CLAS12 is OFF When Beam is Turned For the First Time After long Down.'''</font>
+
# <b>First send beam to the tagger yoke dump:</b>
+
#* Check that beam type is set to "Photon" (<tt>HPS_EPICS->Beam->BTA</tt>).
+
#* Ask MCC to turn ON the tagger magnet and then deliver <10 nA beam.
+
#* Follow instructions under "Procedures" on the documentation tab for [[Media:CLAS12_beamline_commissioning.pdf|Beamline Commissioning Plans]]. To tune the beam on tagger yoke dump and perform harp scans, beam current should be <10 nA.
+
#* Check profile using 2C21 and tagger harp scans, and compare the positions and widths with previous scans ([https://logbooks.jlab.org/entry/3388429],[https://logbooks.jlab.org/entry/3388441])
+
#** Positions on both harps should be within 1mm
+
#** Width on 2C21 should be <~0.1+/-0.05 mm
+
#** Width on tagger harp (2C24) <~0.5 +/- 0.1mm-->
+
<!--#* Halo counters UPS-L/R and TAG-L/T/T2 should be ~few Hz/nA [https://logbooks.jlab.org/entry/3376736]-->
+
<!-- # <b> While MCC degausses the tagger magnet, verify that chicane is ON</b>
+
#* If not, turn it on.  Strictly follow the procedure in the beam line manual!-->
+
<!--# ''' Send beam to the Faraday cup '''
+
#* If the beam optics is correct, then you should immediately see the beam spot on the Downstream Viewer
+
#* If you don't see it immediately, and rates on halo counters are more than 100 Khz, then ask MCC, to change to pulsed (tune mode) beam, and ask to put corrector values. At this point don't accept any CW beam, until beam spot is visible on Downstream Viewer.
+
#* If MCC operator is not able to tune the beam more than 30 minutes, then please notify RC
+
#* Tune beam profile at CLAS12 target using 2H01A harp. The required beam profile at 2H01A harp is: X-width <~0.3 mm, Y-width <~ 0.3 mm
+
#* Check and log the beam spot on chromax viewer
+
#* Check rates on halo counters
+
#*# UPS-L and UPS-R few Hz/nA,
+
#*# The tagger counters should count less than Hz/nA and downstream counters should count ~Hz/nA,
+
#*# Midstream counters few Hz/nA
+
#* Once all the above is achieved, turn first CLAS12 ECal HV '''ON''' and monitor and log ECal rates before bringing rest of the detector UP-->
+
 
+
<!-- === Setting up the FSD threshold ===
+
*When you are about to calculate FSD limit, it means the beam is already established, and the target is in.
+
* To calculate the FSD threshold run the folloing executable
+
hpsrun@clonpc11> /home/hpsrun/scripts/FSD/Calc_FSD_Threshold.exe
+
* Note we use 1 ms integration time, and want 5.5 sigma away from the average rates
+
* Allowed tolerable rate increase default is 15%, if that causes many trips, then contact RC, he might suggest to increase that number
+
* <font color='red'> Make sure if MCC operator set the FSD limit and integration time correctly </font>
+
-->
+
  
 +
==<font color=blue>''' General Instructions''':</font>==
  
|-
+
* For a given beam current, compute the FSD thresholds according to the [https://wiki.jlab.org/clas12-run/images/e/e3/Estab_beam.pdf Establish Physics Quality Beam] document. Call MCC to update the values. Contact the beamline expert if there are questions about setting the FSD thresholds.
!align=left width=50% style="background:#eeeeee;"|
+
* The main lights in the Hall (dome lights) and the Forward Carriage lights are being kept off because of light leaks affecting some of the detectors. If these lights are switched on during an access, they should be switched off when leaving the Hall. Note that the dome lights when switched off cannot be turned back on immediately because they require 10-15 min to cooldown.
 +
* Do not run more than 60 minutes above 30 nA with 5-pass beam without the beam blocker in front of Faraday cup. Put beam blocker in for long running at high currents for 5 pass operations.
 +
* Turn DC HV off only for beam tuning; if no beam is available or when beam is stable, keep them on even if you are not taking data.
 +
* In case of loss of communication with IOCBTARG, follow instructions at https://logbooks.jlab.org/entry/3502218
 +
* With any issue contact On-Call Experts or RC - do not spend more than 15-20 min trying to fix the problem.
 +
* All jscaler iocs (iocjscalerX) on the health screen (under DAQ tab) must be restarted after every DAQ prestart is completed.
 +
* Check that no unecessary beamline-related screens are open.  This includes particularly the big beamline overview screen, but also and any motor/harp/collimator screens, and ioc health screens.
  
 
==Every Shift:==
 
==Every Shift:==
Line 213: Line 166:
 
#* Fill and submit the [https://logbooks.jlab.org/checklists/151 shift checklist in the logbook]
 
#* Fill and submit the [https://logbooks.jlab.org/checklists/151 shift checklist in the logbook]
 
# Perform 2H01A harp scan once per shift or when beam conditions have changed, based on beam monitors (BPMs, halo rates, beam-viewer). During harp scans the HV for DC and HTCC should be OFF.
 
# Perform 2H01A harp scan once per shift or when beam conditions have changed, based on beam monitors (BPMs, halo rates, beam-viewer). During harp scans the HV for DC and HTCC should be OFF.
 
| valign=top style="background:#eeeeee;"|
 
  
 
==Every Run:==
 
==Every Run:==
Line 224: Line 175:
  
 
|}
 
|}
 
= Long Term Schedule =
 
<!--#######################################  LONG TERM  #################################################-->
 
  
 
= Monitoring =
 
= Monitoring =
Line 233: Line 181:
 
| valign=top |
 
| valign=top |
 
===Webcams===
 
===Webcams===
* [http://cctv6.jlab.org Faraday Cup Beam Viewer]
+
* [http://hallbcam07.jlab.org Faraday Cup Beam Viewer]
 
* [http://cctv1.jlab.org Tagger Beam Dump Viewer]
 
* [http://cctv1.jlab.org Tagger Beam Dump Viewer]
 
* [http://cctv12.jlab.org CND CAMAC Crate]
 
* [http://cctv12.jlab.org CND CAMAC Crate]
Line 243: Line 191:
 
*[https://wiki.jlab.org/clas12-run/images/c/c9/CedManual.pdf CED Manual]
 
*[https://wiki.jlab.org/clas12-run/images/c/c9/CedManual.pdf CED Manual]
 
*[https://wiki.jlab.org/clas12-run/images/f/fd/CLAS12Mon_documentation.pdf MON12 Manual]
 
*[https://wiki.jlab.org/clas12-run/images/f/fd/CLAS12Mon_documentation.pdf MON12 Manual]
*[https://wiki.jlab.org/clas12-run/images/5/5a/OfflineKPPmanual2.pdf KPP off-line Manual]
+
*[https://wiki.jlab.org/clas12-run/images/a/ae/Online_shifts.pdf off-line Manual]
  
 
| valign=top |
 
| valign=top |
Line 257: Line 205:
 
===Hall-B===
 
===Hall-B===
 
* [https://clasweb.jlab.org/wiki/index.php/CLAS12_OPS_Doc Operation Safety Procedures]
 
* [https://clasweb.jlab.org/wiki/index.php/CLAS12_OPS_Doc Operation Safety Procedures]
* [https://clasweb.jlab.org/wiki/index.php/Engineering_Run_Analysis Offline Analysis Wiki]
+
* [https://wiki.jlab.org/clas12-run/index.php/Run_Group_A Run Group A Wiki]
 +
* [https://clasweb.jlab.org/wiki/index.php/Run_Group_A Run Group A Analysis Wiki]
 +
* [https://clasweb.jlab.org/wiki/index.php/Engineering_Run_Analysis Engineering Run Analysis Wiki]
 +
* [http://clasweb.jlab.org/rcdb RCDB]
 
| valign=top |
 
| valign=top |
 
===Accelerator===
 
===Accelerator===
Line 263: Line 214:
 
* [http://opweb.acc.jlab.org/CSUEApps/bta03/pd_shiftplan_history.php Program Deputy Shift Plans]
 
* [http://opweb.acc.jlab.org/CSUEApps/bta03/pd_shiftplan_history.php Program Deputy Shift Plans]
 
* [http://opweb.acc.jlab.org/internal/ops/ops_webpage/run_coord/runcoord_form.php?action=main Run Coordinator Reports]
 
* [http://opweb.acc.jlab.org/internal/ops/ops_webpage/run_coord/runcoord_form.php?action=main Run Coordinator Reports]
 +
| valign=top |
 +
===Bluejean meetings===
 +
* [https://bluejeans.com/502085879 Daily analysis meeting] 502085879
 +
* [https://bluejeans.com/502085879 Daily Run meeting] 502085879
 +
* [https://bluejeans.com/7572697303 RGA Wed meeting] 7572697303
 
|}
 
|}
  

Latest revision as of 13:36, 31 January 2019

[edit]
Person Phone Number
Run Coordinator 9-757 575-7540 (cell)
Physics Division Liaison 9-757 876-1789 (cell)
Run Group C coordinator 9-757 639-6640 (cell)
Shift Expert 5244 or 9-757 329-4846 (cell)
Shift Worker 5126
MCC-OPS 7048
Crew Chief 7045
Crew Chief 9-757 876-3367 (cell)
Program Deputy 9-757 876-7997 (cell)
Engineering on-call 9-757 748-5048 (cell)
Engineering on-call secondary 9-757 897-9060 (cell)
Radcon (needed for target cell swaps) 9-757 876-1743 (cell)
Gate House Guard 5822
Location Phone Number
Hall-B Floor 5165
Hall-B Space Frame 5170, 5171
Hall-B Forward Carriage 5371
Hall-B Counting Room 5245 (Shift1), 5126 (Shift2)
Hall-B Counting Room 5244 (Expert)
Hall-B Gas Shed 7115
System Phone Number On-Call Person
DC (757) 748-5048 (cell) Engineering On-Call
SVT + MM (757) 541-7539 (cell) Yuri Gotra Primary
SVT + MM (757) 753-7769 (cell) Rafo Paremuzyan (secondary)
ECAL (757) 810-1489 (cell) Cole Smith
FTOF/CTOF (757) 344-7204 (cell) Jose Carvajal
CND (757) 344-7204 (cell) Jose Carvajal
HTCC-LTCC (757) 344-7174 (cell) Youri Sharabian
FT (757) 344-1848 (cell) Raffaella De Vita
BAND (757) 310-7198 (cell) Florian Hauenstein
RICH (757) 344-3235 (cell) Valery Kubarovsky
DAQ (757) 232-6221 (cell) Sergey Boiarinov
Slow Controls (757) 748-6922 (cell) Nathan Baltzell
Beamline (757) 303-3996 (cell) Eugene Pasyuk
Pol. Target On-Call (757)-218-2266 (cell) See schedule or call RC
Polarized Target (757) 746-9277 (cell) Chris Keith
Polarized Target (757) 897-1415 (cell) James Maxwell
Polarized Target (757) 871-5374 (cell) James Brock
Target (not used) (757) 822-9586 (cell) Bob Miller Primary
Target (not used) (757) 897-9060 (cell) Denny Insley Secondary
Counting House C x6000
Counting House D x5504

In case of a problem with superconducting magnets call Engineering on-call first, particularly if it is related to cryo.
For all other superconducting magnet problems call magnet group.
Their schedule and phone numbers are posted on the wall next to the Saclay target computer.




Click Here to edit Phone Numbers. Note, you then also have to edit this page to force a refresh.


CLAS12 Engineering Run, Winter 2018
Beam energy 10.6 GeV (5 pass)
Important: Document all your work in the logbook!
Remember to fill in the run list at the beginning and end of each run (clas12run@gmail.com can fill the run list)

RC: Silvia Niccolai

  • (757) 575-7540
  • 9 575 7540 from Counting Room
  • silvia@jlab.org

PDL: Maurizio Ungaro

  • (757) 876-1789
  • 9 876-1789 from Counting Room
  • ungaro@jlab.org


  • Note 1: Be very mindful of the background rates in the halo counters, rates in the detectors, and currents in the SVT for all settings to ensure that they are at safe levels.
  • Note 2: At the end of each run, follow the DAQ restart sequence "end run", "abort", "reset", "download", "prestart", "go". After DAQ prestart is complete reboot the scaler IOCs with the command: iocjscalerRestartAll.sh. Note: After each step, make sure it is complete in the Run Control message window. If a roc has crashed, find which one it is and issue a roc_reboot command and try again. Contact the DAQ expert if there are any questions.
  • Note 3: Nominal beam positions: 2C21 (X=0.0 mm, Y=0.0 mm), 2C24 (X=0.0 mm, Y=0.7 mm), 2H01 (X=0.3 mm, Y=-0.6 mm)
  • Note 4: With beam to the Faraday Cup, typical rates pn all halo counters upstream from the target should be either 0 or of the order of few counts. Count rates in the range of tens or more may indicate bad beam tune or bleed-through from other Halls.

Run Plan:

(last update 2/4 - 14:30)

All studies will take data at 100% torus field (negatives inbending) and 100% solenoid field (positive polarity on supply). The beam position should be as indicated above. Make sure FSD thresholds are set correctly for whatever current is selected (refer to instructions in the "Establish-physics quality beam" procedure at [1]), integration time is set to 5 ms, and that the orbit locks are on.

  • Take 2 hour data runs with PROD/elec_htcc_1phe_pcal_300.trg at 30 nA with the following DC HV and thresholds:
    • R1: #9/-45 mV, R2: #10/-65 mV, R3: #10/-60 mV
    • R1: #8/-30 mV, R2: #10/-65 mV, R3: #9/-45 mV
    • R1: #8/-30 mV, R2: #9/-45 mV, R3: #9/-45 mV
  • Take data at 35 nA with PROD/elec_htcc_1phe_pcal_300.trg until morning; runs should be 2 hrs in length. Use R1: #8/-30 mV, R2: #9/-45 mV, R3: #9/-45 mV
  • Hall B work for Monday:
    • Ramp down solenoid (torus can stay up) (RC)
    • Empty the hydrogen target (Hall B Engineering)
    • Complete shielding addition outside scattering chamber (Hall B Engineering)
    • Restore beamline (Hall B Engineering)
    • Replace FT-Hode mezzanine board (N. Zachar)
    • Work on DC cable swaps (M. Cook + M. Mestayer)
    • Work on vacuum gauge (D. Anderson)
    • Investigate polarity of busy signal (S. Boyarinov)
    • Setup gated/ungated scalers and clock scalers (S. Boyarinov)
    • SAF111 walkthrough (E. Pasyuk)
    • Pass change (5-pass to 3-pass)


General Instructions:

  • For a given beam current, compute the FSD thresholds according to the Establish Physics Quality Beam document. Call MCC to update the values. Contact the beamline expert if there are questions about setting the FSD thresholds.
  • The main lights in the Hall (dome lights) and the Forward Carriage lights are being kept off because of light leaks affecting some of the detectors. If these lights are switched on during an access, they should be switched off when leaving the Hall. Note that the dome lights when switched off cannot be turned back on immediately because they require 10-15 min to cooldown.
  • Do not run more than 60 minutes above 30 nA with 5-pass beam without the beam blocker in front of Faraday cup. Put beam blocker in for long running at high currents for 5 pass operations.
  • Turn DC HV off only for beam tuning; if no beam is available or when beam is stable, keep them on even if you are not taking data.
  • In case of loss of communication with IOCBTARG, follow instructions at https://logbooks.jlab.org/entry/3502218
  • With any issue contact On-Call Experts or RC - do not spend more than 15-20 min trying to fix the problem.
  • All jscaler iocs (iocjscalerX) on the health screen (under DAQ tab) must be restarted after every DAQ prestart is completed.
  • Check that no unecessary beamline-related screens are open. This includes particularly the big beamline overview screen, but also and any motor/harp/collimator screens, and ioc health screens.

Every Shift:

  1. Follow run plan as outlined by RC
  2. If any concern about beam stability, ask MCC if orbit locks are on (they should be).
  3. Keep shift summary up to date in HBLOG. Record all that happens.
    • Check on white board all scalers, strip charts and monitoring plots that need to be logged regularly
    • Document any beam condition change and send scaler GUIs to HBLOG
    • Fill out BTA hourly. Click "Load from EPICS" to automatically fill the left side.
    • Fill and submit the shift checklist in the logbook
  4. Perform 2H01A harp scan once per shift or when beam conditions have changed, based on beam monitors (BPMs, halo rates, beam-viewer). During harp scans the HV for DC and HTCC should be OFF.

Every Run:

  1. Log screenshots of:
    • main scaler GUI display
    • Detector occupancy plots
    • Trigger rate gui
    • Beam strip charts


Clas12design.png