Run Group B

From clas12-run
Revision as of 15:45, 11 December 2019 by Silvia (Talk | contribs)

Jump to: navigation, search
[edit]

Shift Schedule

Shift Checklist

Hot Checkout

Beam Time Accounting

Manuals

Procedures

JLab Logbooks

RC schedule

  • Nov 20 - Nov 27: S. Stepanyan
  • Nov 27 - Dec 4: M. Contalbrigo
  • Dec 4 - Dec 11: D. Sokhan
  • Dec 11 - Dec 19: S. Niccolai
  • Jan 7 - Jan 15: J. Gilfoyle
  • Jan 15 - Jan 22: F. Hauenstein /W. Phelps
  • Jan 22 - Jan 29: B. McKinnon

Person Phone Number
Run Coordinator 9-757 575-7540 (cell)
Physics Division Liaison 9-757 876-1789 (cell)
Shift Expert 5244 or 9-757 329-4846 (cell)
Shift Worker 5126
MCC-OPS 7048
Crew Chief 7045
Crew Chief 9-757 876-3367 (cell)
Program Deputy 9-757 876-7997 (cell)
Engineering on-call 9-757 748-5048 (cell)
Engineering on-call secondary 9-757 897-9060 (cell)
Radcon (needed for target cell swaps) 9-757 876-1743 (cell)
Gate House Guard 5822
Location Phone Number
Hall-B Floor 5165
Hall-B Space Frame 5170, 5171
Hall-B Forward Carriage 5371
Hall-B Counting Room 5245 (Shift1), 5126 (Shift2)
Hall-B Counting Room 5244 (Expert)
Hall-B Gas Shed 7115
System Phone Number On-Call Person
DC (757) 748-5048 (cell) Engineering On-Call
SVT + MM (757) 541-7539 (cell) Yuri Gotra Primary
SVT + MM (757) 753-7769 (cell) Rafo Paremuzyan (secondary)
ECAL (757) 810-1489 (cell) Cole Smith
FTOF/CTOF (757) 344-7204 (cell) Jose Carvajal
CND (757) 344-7204 (cell) Silvia Niccolai
HTCC-LTCC (757) 344-7174 (cell) Youri Sharabian
FT (757) 344-1848 (cell) Raffaella De Vita
BAND (757) 310-7198 (cell) Florian Hauenstein
RICH (757) 344-3235 (cell) Valery Kubarovsky
DAQ (757) 232-6221 (cell) Sergey Boiarinov
Slow Controls (757) 748-6922 (cell) Nathan Baltzell
Beamline (757) 303-3996 (cell) Eugene Pasyuk
Polarized Target (757) 218-2266 (cell) Chris Keith
Target (757) 822-9586 (cell) Bob Miller Primary
Target secondary (757) 897-9060 (cell) Denny Insley

In case of a problem with superconducting magnets call Engineering on-call first, particularly if it is related to cryo.
For all other superconducting magnet problems call magnet group.
Their schedule and phone numbers are posted on the wall next to the Saclay target computer.




Click Here to edit Phone Numbers. Note, you then also have to edit this page to force a refresh.


CLAS12 Run Group B, December 2019 - January 2020
Beam energy ~10.4 GeV (5 pass)
Important: Document all your work in the logbook!

RC: Daria Sokhan

PDL: Maurizio Ungaro



Run Plan: December 10 - 11

Once beam returns after the long down-time, send to tagger, do harp scans, when looking good send to Faraday Cup and do harp scans. 
Physics production runs: 200M events, 40 nA, trigger rgb_outbending_v12_1.trg, configuration PROD66.



DAQ config: PROD66 (for runs written to tape and deleted from disk), PROD66_PIN (for runs which need to be kept on disk for immediate access)

Trigger file: rgb_outbending_v12_1.trg

Nominal current: 40 nA

Compare the monitoring histograms from clas12mon to the reference and troubleshoot as needed.


Run database: when starting/stopping a run, enter (or check if already present) the requested current in the pop-up window and put RELEVANT COMMENTS (eg: "production run", "trigger test vXX, changed this and that" not just "run") -- please label junk runs if you get the chance. Please also keep a record of run numbers and their conditions in the shift summary. The information you enter in the dialogue box goes directly into the run database -- it's our primary source of run info and mistakes are hard to correct a posteriori.


Please run the script to look at trigger structure once per shift and check that you get a smooth distribution. Instructions are here: [1]

Keep an eye on CND channel S14L1R -- it's a bit temperamental. If it trips, switch HV off and on again for it and make an entry in the log book.



At the end of each run, follow the STANDARD DAQ RESTART SEQUENCE
This needs to be followed at the end of every run. Note: this might be different from the instructions coming up on RunControl.

  • "end run", "cancel", "reset"
  • if the run ended correctly:
    • "download", "prestart", "go"
  • if the run did not end correctly or if any ROCs had to be rebooted:
    • "configure", "download", "prestart", "go"
  • After each step, make sure it completed in the Run Control message window. If a ROC has crashed, find which one it is, issue a roc_reboot command ON JUST THAT ROC and try again. Contact the DAQ expert if there are any questions.



References and Standards:

(last update 12/8/2019- 13:00)

Nominal Beam Positions

  • 2H01, X: +1.5 mm, Y: -1.2 mm
  • 2C21, X: -0.2 mm, Y: -0.25 mm
  • 2C24, X: -0.3 mm, Y: -0.8 mm

FSD Thresholds

  • Upstream: 2000 Hz
  • Midstream: 2000 Hz
  • Downstream: 700000 Hz
  • BOM: 60000

Reference Harp Scans for Beam on Faraday Cup: 2C21 [2], 2C24 (tagger harp) [3], 2H01 [4]

Reference Harp Scans for Beam on Tagger dump: 2C21 [5], 2C24 (tagger harp) [6]

Reference Monitoring Histograms (40 nA, production trigger) [7]

Counter rates

  • Upstream counters integrated rates: 0-15 Hz (acceptable up to 100 Hz are acceptable) @50 nA.
  • Midstream counters: 10-20 Hz (acceptable up to 50 Hz) @50 nA.
  • Counting rates of ~ hundreds of Hz may indicate bad beam tune or bleed-through from other Halls.

Beamline vacuum: should be not higher than 5e-5.


General Instructions:

  • The main lights in the Hall (dome lights) and the Forward Carriage lights are being kept off because of light leaks affecting some of the detectors. If these lights are switched on during an access, they should be switched off when leaving the Hall. Note that the dome lights when switched off cannot be turned back on immediately because they require 10-15 min to cooldown.
  • Do not run more than 30 minutes above 30 nA with 5-pass beam without the beam blocker in front of Faraday cup . Put beam blocker in for long running at high currents for 5 pass operations.
  • Turn DC HV off only for beam tuning; if no beam is available or when beam is stable, keep them on even if you are not taking data.
  • In case of loss of communication with IOCBTARG , follow instructions at https://logbooks.jlab.org/entry/3502218
  • With any issue contact On-Call Experts or RC - do not spend more than 15-20 min trying to fix the problem. If the phone is not answered, try the "Page Experts" button on top of CLASCSS.
  • Check for and read any comments to log-book entries made during your shift!


Every Shift:

  • Follow run plan as outlined by RC
  • If any concern about beam stability, ask MCC if orbit locks are on (they should be).
  • Keep shift summary up to date in HBLOG. Record all that happens.
  • Document any beam condition change and send scaler GUIs to HBLOG
  • Fill out BTA hourly. Click "Load from EPICS" to automatically fill the left side. Run the script btaGet.py to print for you the correct BTA info for this hour -- edit the values on the BTA page if they are wrong!
  • Upload spectra from clas12mon at begin and end of shift and cross-check with reference spectra (make sure you select the SAME SECTOR as for the reference plots on tabs which have multiple sectors).
    • Reset clas12mon every ~2 hours and inspect spectra (some detectors have buttons at the bottom to toggle between the sectors -- please check all of them).
  • Fill and submit the shift checklist in the logbook
  • Run script to check smoothness of the trigger time structure: [8]
  • Monitor the SVT Slow Controls status, post plot of current stability in the HBSVT elog once per shift.


Every Run:

  • Check values at the start of every run and log screenshots of:
    • Main scaler GUI display
    • Trigger rate GUI
    • Beam strip charts
    • FTC scalers
  • At the start and end of every run, check that the data filled in the database run list is correct (especially fields which are filled in manually, like beam current and comments). This replaces the previously-used spreadsheet.
  • When checking the ECAL response, make sure to look at the histograms for each sector by using the sector buttons at the bottom of the clas12mon window - if adcecal* or/and adcpcal* ROC crashes, there will be no alarm and the histograms are the way to notice this issue.
  • Same holds for FTOF.


Notes / Troubleshooting :

FTOF HVs: The goal is to minimize the number of power cycles of the dividers.

    • OFF during: initial beam tuning to the Faraday Cup after CLAS12 has been off for a long shutdown, during a Moller run, harp scans, or if there is tuned/pulsed beam in the upstream beamline.
    • ON after an initial beam tune has been established and if there are only minor steering adjustments and “tweaks” being made.
    • If in doubt, call FTOF expert


Torus and/or Solenoid Fast Dump

    1. Notify MCC to request beam OFF and to drop Hall B status to Power Permit
    2. Call Engineering on-call
    3. Make separate log entry with copies to HBTORUS and HBSOLENOID logbooks. In the "Notify" field add Ruben Fair, Probir Goshal, Dave Kashy and esr-users@jlab.org
    4. Notify Run Coordinator
    5. Turn off all detectors


Beam to the Faraday Cup: Fast Shut Down elements

  • Upstream, Midstream, Downstream, BOM, and Solenoid FSD elements should always be in the state UNMASKED
  • No changes to the FSD threshold should be made without RC or beamline expert approval


Turning MVT off: do not press "All HV OFF". Instead go to 'Restore settings' from the MVT overview screen:

    1. SafeMode.snp for beam tuning and Moeller runs
    2. MV_HV_FullField.snp for full solenoid field
    3. MV_HV_MidField.snp wgeb solenoid < 4T


CND CAMAC crate switch on / reboot:

If CAMAC crate (camac1) holding CND CFD boards is switched off for any reason, always reset the associated CND CFD thresholds by typing, ssh into clondaq3 and type:

$CODA/src/rol/Linux_x86_64/bin/cnd-cfd-thresh -w 0

If this command is failing and the crate is not responding, first reboot it as follows: roc_reboot camac1

and then repeat the threshold reset command above.


Solutions for common SVT issues: see [9]


RICH recovery procedures: [10]

To be followed in case of:

  1. DAQ crash: rich4 is not responding or
  2. RICH alarms (LV,missing tile, temperature, etc).

If it does not work or you are uncertain about what to do, contact the RICH expert on call. Please note that missing tiles typically occur due to lost communication. Keep in mind that the recovery procedure will kill DAQ. If DAQ is running for purpose other than data taking (for which the RICH acceptance is important) do not initiate the recovery procedure. The most critical parameter for the RICH is the temperature of the photosensors. If the temperature rises above limits, an interlock will automatically turn the RICH HV and LV off. If this happens, notify the expert on call and keep taking data without RICH.


Observed asymmetry in FTCal ADC Scalers

When running at low current (<10 nA), FTC asymmetries can be affected by hot channels. If large asymmetries are detected in those conditions, cross check with other detectors (BOM rates, DC occupancies) before taking further action.


CED display not showing events

Sometimes, CED screens are up but not active (events not showing at all). To solve this:

  1. Close the CED sceen
  2. ssh to clondaq4
  3. Once in the right machine, type ced, and wait for the windows to appear.
  4. Go to "File" -> "Connect to ET ring". Make sure to select clondaq6, as the online data is being streamed.
  5. Go to "Events" (same level as "File") and check "Auto Next-Event Every 2.0 sec" (if it is not selected).

You should see the events now, if all is working well.


Clas12design.png