

Office of Science

Computing \hat{q} on a quenched SU(3) lattice

Amit Kumar

Wayne State University, MI, USA

Collaborators: A. Majumder and C. Nonaka

EIC user group meeting 2018, August 1st, 2018

Outline

- $\hfill \hfill \hfill$
- \Box Defining \widehat{q} for cold nuclear matter (EIC) and hot QGP (RHIC & LHC)
- \Box Formulating \hat{q} for hot QGP using Lattice gauge theory
- 1) Previous study done on a quenched SU(2) lattice
- 2) Extending calculations to a quenched SU(3) lattice
- \Box Estimates of \widehat{q} on a quenched QGP plasma

Leading hadron suppression in Quark-Gluon Plasma

Transport coefficient \hat{q} and leading hadron suppression

Leading parton going through medium

Transport coefficient \hat{q} : Average transverse

momentum change per unit length

$$\widehat{q}(\overrightarrow{r},t) = rac{\langle k_{\perp}^2 \rangle}{L}$$

 \widehat{q} is Input parameter to full model calculation

Transport coefficient \hat{q} and leading hadron suppression

Leading parton going through medium

Transport coefficient \hat{q} : Average transverse momentum change per unit length

$$\widehat{q}(\overrightarrow{r},t) = rac{\langle k_{\perp}^2 \rangle}{L}$$

 $\widehat{\boldsymbol{q}}$ is Input parameter to full model calculation

JET Collaboration(Burke et al. 2014)

Transport coefficient \hat{q} for hot QGP

Based on fit to the experimental data

JET Collaboration(Burke et al. 2014)

Jet propagation through QGP medium

One can use Feynman diagram techniques to compute \hat{q} from these diagrams.

Jet modification in DIS or EIC experiments

One can use Feynman diagram techniques to compute \hat{q} from these diagrams.

\hat{q} for cold nuclear matter and hot QGP

In light-cone coordinate: (Breit frame)

Photon:
$$q^2 = (q^0)^2 - (\vec{q})^2 < 0; q = Q\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), -ve \ z \ dir$$
Glauber gluon: $k \sim Q(\lambda^2, \lambda^2, \lambda);$ Q=Hard Scale; $\lambda <<1$ Parton p_1 . $p_1 \sim Q(1, \lambda^2, \lambda)$

Jet Quenching Parameter

$$\widehat{q}(\vec{r},t) = rac{\langle l_{q\perp}^2 \rangle}{L}$$
 $\vec{l}_{q\perp} = \vec{k}_{\perp}$

$$\widehat{q} = \frac{4\pi^2 \alpha_s}{N_c} \int \frac{dy^- d^2 y_\perp}{(2\pi)^3} d^2 k_\perp e^{-i\frac{k_\perp^2}{2q^-}y^- + i\vec{k}_\perp \cdot \vec{y}_\perp}$$
$$\times \langle M | F_\perp^{+\mu}(y^-, y_\perp) F_{\perp\mu}^+(\mathbf{0}) | M \rangle$$

- * \hat{q} is the one transport coefficient which can be identically defined in cold nuclear matter and hot QGP
- ✤ |M> is thermal state, weighted by boltzman factor
- ✤ |M> is nuclear state at zero temperature

Radiated-gluon Scattering from nucleus

Radiated-gluon Scattering from the QGP

Computing \hat{q} for cold nuclear matter or hot QGP from first principle is quite challenging

QGP is locally thermalized and highly non-perturbative

First principles calculation: Lattice QCD to compute \widehat{q}

Lattice formulation of \hat{q}

Section of a QGP medium $\beta = \frac{1}{T} = n_t a$ $L = n_x a = 4n_t a$ q^{-} $q + k_{\perp}$ \boldsymbol{k}_{\perp} **OGP Medium**

- Simplest process: A leading quark propagating
 through hot plasma (gluons only) at temperature T
- $q = \left(\frac{\mu^2}{2q^{-}}, q^{-}, 0\right) = \left(\lambda^2, 1, 0\right)Q; \text{ Hard scale} = Q; \lambda \ll 1$ $k = \left(k^{+}, k^{-}, k_{\perp}0\right) = \left(\lambda^2, \lambda^2, \lambda\right)Q; \text{ Glauber gluon}$
- Life time of quark, $\tau \ge 4n_t a = \frac{4}{T}$

Lattice formulation of \hat{q}

 Simplest process: A leading quark propagating through hot plasma (gluons only) at temperature T

$$q = \left(\frac{\mu^2}{2q^{-1}}, q^{-1}, 0\right) = \left(\lambda^2, 1, 0\right)Q; \text{ Hard scale} = Q; \lambda \ll k = \left(k^{+1}, k^{-1}, k_{\perp} 0\right) = \left(\lambda^2, \lambda^2, \lambda\right)Q; \text{ Glauber gluon}$$

• Life time of quark, $\tau \ge 4n_t a = \frac{4}{T}$

$$\widehat{q}(\overrightarrow{r},t) = \sum_{k} k_{\perp}^{2} \frac{Disc[W(k)]}{L}$$

$$\widehat{q} = \frac{4\pi^2 \alpha_s}{N_c} \int \frac{dy^- d^2 y_\perp}{(2\pi)^3} d^2 k_\perp e^{-i\frac{k_\perp^2}{2q^-}y^- + i\vec{k}_\perp \cdot \vec{y}_\perp}$$
Non-perturbative part
$$\times \langle M | F_\perp^{+\mu}(y^-, y_\perp) F_{\perp\mu}^+(0) | M \rangle$$
(Lattice QCD)

A. Majumder, PRC 87, 034905 (2013) Section of a QGP medium $\beta = \frac{1}{T} = n_t a$ $L = n_x a = 4n_t a$ q^{-} $q + k_{\perp}$ \boldsymbol{k}_{\perp} QGP **Medium**

$\Rightarrow Physical form of \hat{q}$ $\hat{q} = \frac{4\pi^2 \alpha_s}{N_c} \int \frac{dy^- d^2 y_\perp}{(2\pi)^3} d^2 k_\perp e^{-i\frac{k_\perp^2}{2q^-}y^- + i\vec{k}_\perp \cdot \vec{y}_\perp} \langle M | F_\perp^{+\mu}(y^-, y_\perp) F_{\perp\mu}^{+}(0) | M \rangle$

***** General form of \hat{q} : with q^- is Fixed; $q_{\perp} = 0$; q^+ is variable

 $\widehat{Q}(q^{+}) = \frac{4\pi^{2}\alpha_{s}}{N_{c}} \int \frac{d^{4}yd^{4}k}{2\pi^{4}} e^{iky} 2q^{-} \frac{\langle M | F_{\perp}^{+\mu}(0) F_{\perp\mu}^{+}(y) | M \rangle}{(q+k)^{2} + i\epsilon}$

Physical form of
$$\hat{q}$$

$$\hat{q} = \frac{4\pi^2 \alpha_s}{N_c} \int \frac{dy^- d^2 y_\perp}{(2\pi)^3} d^2 k_\perp e^{-i\frac{k_\perp^2}{2q^-}y^- + i\vec{k}_\perp \cdot \vec{y}_\perp} \left\langle M \left| F_\perp^{+\mu}(y^-, y_\perp) F_{\perp\mu}^+(0) \right| M \right\rangle$$

***** General form of \hat{q} : with q^- is Fixed; $q_{\perp} = 0$; q^+ is variable

 $\widehat{Q}(q^{+}) = \frac{4\pi^{2}\alpha_{s}}{N_{c}} \int \frac{d^{4}yd^{4}k}{2\pi^{4}} e^{iky} 2q^{-} \frac{\langle M | F_{\perp}^{+\mu}(0) F_{\perp\mu}^{+}(y) | M \rangle}{(q+k)^{2} + i\epsilon}$ 1) When $q^{+} \sim T$ $\operatorname{Disc}[\widehat{Q}(q^{+})]_{at q^{+} \sim T} = \widehat{q}$

* Physical form of
$$\hat{q}$$

 $\hat{q} = \frac{4\pi^2 \alpha_s}{N_c} \int \frac{dy^- d^2 y_\perp}{(2\pi)^3} d^2 k_\perp e^{-i\frac{k_\perp^2}{2q^-}y^- + i\vec{k}_\perp \cdot \vec{y}_\perp} \langle M | F_\perp^{+\mu}(y^-, y_\perp) F_{\perp\mu}^+(0) | M \rangle$

***** General form of \hat{q} : with q^- is Fixed; $q_{\perp} = 0$; q^+ is variable

 $\widehat{Q}(q^{+}) = \frac{4\pi^{2}\alpha_{s}}{N_{c}} \int \frac{d^{4}yd^{4}k}{2\pi^{4}} e^{iky} 2q^{-} \frac{\langle M | F_{\perp}^{+\mu}(0) F_{\perp\mu}^{+}(y) | M \rangle}{(q+k)^{2} + i\epsilon}$

1) When $q^+ \sim T$

$$\operatorname{Disc}\left[\widehat{Q}(q^+)\right]_{at q^+ \sim T} = \widehat{q}$$

2) When $q^+ = -q^ \frac{1}{(q+k)^2} \simeq \frac{1}{-2q^-q^- + 2q^-(k^+ - k^-)} = -\frac{1}{2(q^-)^2} \left[1 - \left(\frac{k^+ - k^-}{q^-}\right) \right]^{-1} = -\frac{1}{2(q^-)^2} \left[1 - \left(\frac{\sqrt{2}k_z}{q^-}\right) \right]^{-1} = -\frac{1}{2(q^-)^2} \left[\sum_{n=0}^{\infty} \left(\frac{\sqrt{2}k_z}{q^-}\right)^n \right]^{-1}$

***** General form of \hat{q} : with q^- is Fixed; $q_{\perp} = 0$; q^+ is variable

 $\widehat{Q}(q^{+}) = \frac{4\pi^{2}\alpha_{s}}{N_{c}} \int \frac{d^{4}yd^{4}k}{2\pi^{4}} e^{iky} 2q^{-} \frac{\langle M | F_{\perp}^{+\mu}(0) F_{\perp\mu}^{+}(y) | M \rangle}{(q+k)^{2} + i\epsilon}$

1) When $q^+ \sim T$

$$\operatorname{Disc}\left[\widehat{Q}(q^+)\right]_{at q^+ \sim T} = \widehat{q}$$

2) When
$$q^{+} = -q^{-}$$

$$\frac{1}{(q+k)^{2}} \approx \frac{1}{-2q^{-}q^{-} + 2q^{-}(k^{+} - k^{-})} = -\frac{1}{2(q^{-})^{2}} \left[1 - \left(\frac{k^{+} - k^{-}}{q^{-}}\right) \right]^{-1} = -\frac{1}{2(q^{-})^{2}} \left[1 - \left(\frac{\sqrt{2}k_{z}}{q^{-}}\right) \right]^{-1} = -\frac{1}{2(q^{-})^{2}} \left[\sum_{n=0}^{\infty} \left(\frac{\sqrt{2}k_{z}}{q^{-}}\right)^{n} \right]^{n}$$

$$\widehat{Q}(q^{+} = -q^{-}) = \frac{4\pi^{2}\alpha_{s}}{N_{c}q^{-}} \langle M|F_{\perp}^{+\mu}(0) \sum_{n=0}^{\infty} \left(\frac{i\sqrt{2}D_{z}}{q^{-}}\right)^{n} F_{\perp\mu}^{+}(0) |M\rangle$$
18

\hat{q} as a series of local operators

***** Physical form of \hat{q} at LO:

$$\widehat{q} = \frac{4\sqrt{2}\pi^2 \alpha_s}{N_c T} \langle M | F_{\perp}^{+\mu}(0) \sum_{n=0}^{\infty} \left(\frac{i\sqrt{2}D_z}{q^-}\right)^n F_{\perp\mu}^{+}(0) | M \rangle_{(Thermal-Vacuum)}$$

\hat{q} as a series of local operators

***** Physical form of \hat{q} at LO:

Xiangdong Ji, PRL 110, 262002 (2013) Parton PDF operator product expansion

 $\widehat{q} = \frac{4\sqrt{2}\pi^2 \alpha_s}{N_c T} \langle M | F_{\perp}^{+\mu}(0) \sum_{n=0}^{\infty} \left(\frac{i\sqrt{2}D_z}{q^-}\right)^n F_{\perp\mu}^+(0) | M \rangle_{(Thermal-Vacuum)}$ with D_z derivatives

26

\hat{q} as a series of local operators

• Physical form of \hat{q} at LO:

Xiangdong Ji, PRL 110, 262002 (2013) Parton PDF operator product expansion $\widehat{q} = \frac{4\sqrt{2}\pi^2 \alpha_s}{N_c T} \langle M | F_{\perp}^{+\mu}(0) \sum_{z}^{\infty} \left(\frac{i\sqrt{2}D_z}{q^{-z}}\right)^n F_{\perp\mu}^+(0) | M \rangle_{(Thermal-Vacuum)}$ with D_z derivatives

Rotating to Euclidean space:

$$x^0 \rightarrow -ix^4; \quad A^0 \rightarrow iA^4$$

 $\implies F^{0i} \rightarrow iF^{4i}$

 $\sum_{i=1}^{-} Trace[F^{3i}F^{3i} - F^{4i}F^{4i}] + 2i\sum_{i=1}^{-} Trace[F^{3i}F^{4i}]$ LO operators: **Crossed operator Uncrossed operator** LO operators with D_z derivative: $\sum_{i=4}^{27} Trace [F^{3i}D_zF^{3i} - F^{4i}D_zF^{4i}] + i\sum_{i=4}^{27} Trace [F^{3i}D_zF^{4i} + F^{4i}D_zF^{3i}]$

Operators in quenched SU(2) plasma

- Average over 5000 configuration
- Transition temperature $T_c \in [170, 350]$ MeV
- Crossed correlator is small for T ~ 400 MeV

Operators in quenched SU(3) plasma

29

Operators in quenched SU(3) plasma

Re<0>

Operators in quenched SU(3) plasma

collaboration with Chiho Nonaka) Preliminary

Scale setting on the lattice using Polyakov loop

Expectation value of Polyakov loop:

$$P = \frac{1}{n_x n_y n_z} tr \left[\sum_{\vec{r}} \prod_{n=0}^{n_t - 1} U_4(na, \vec{r}) \right]$$

Two loop beta function

$$a_{L} = \frac{1}{\Lambda_{L}} \left(\frac{11}{16\pi^{2}g^{2}}\right)^{-\frac{51}{121}} exp\left(-\frac{8\pi^{2}}{11g^{2}}\right)$$
$$Temperature, T = \frac{1}{n_{t}a_{L}} \quad (\text{Pure SU(3)})$$

Nonperturbative correction

Tune
$$\frac{T_c}{\Lambda_L}$$
 is independent of g

Real part of FF correlator in quenched SU(3)

- Uncrossed correlator is dominant at high temperature
- Crossed correlator goes to zero at high temperature
- Correlator with Dz derivative are suppressed

Real part of FF correlator in quenched SU(3)

- Uncrossed correlator is dominant at high temperature
- Crossed correlator goes to zero at high temperature
- Correlators with Dz derivative are suppressed

\hat{q} in quenched SU(3) plasma

\hat{q} in quenched SU(3) plasma

Summary and Future work

\Box First calculation of \widehat{q} on SU(3) quenched plasma

- Analytic continuation to deep Euclidean space and expressed as local operators
- Scale setting using perturbative loop beta function with non-perturbative correction using Polyakov loop.
- Real part of \hat{q} goes as T^3 for T > 400 MeV
- Real part of \hat{q} shows scaling behavior (Nt=2,4 and 6)
- Imaginary part goes to 0 for T > 400 MeV

 $\Box \ \hat{q} \,$ is the one transport coefficient which can be identically defined in cold nuclear matter and hot QGP

• It gives a window into studying the change of the gluon distribution in cold nuclear matter vs QGP.

□ Future work

- Extend calculation using Improved Action and bigger lattice size
- Include radiation diagram contributions
- Extend to unquenched plasma (QGP)

Thanks to group members and colleagues

- Abhijit Majumder
- Chiho Nonaka (Nagoya University)

ShanShan Cao, Yasuki Tachibana and Chathuranga Sirimana

Imaginary part of FF correlator in quenched SU(3)

 Imaginary part of FF correlator does not contribute