Concept and Status on the Electromagnetic Calorimeters @ PANDA

Rainer W. Novotny, on behalf of the PANDA Collaboration 2nd Physics Institute, University Giessen

- The PANDA detector and the EMCs
- PbWO₄ the chosen inorganic scintillator
- The detector design
- The achieved performances
- The steps towards a final design
- Summary and outlook

• the PANDA detector at FAIR

 4π detector for spectroscopy and reaction dynamics with antiprotons

• additional components (1)

Target System and Tracking Devices

G.Boca, U. Pavia, Italy

• additional components (2)

Particle ID detectors

G.Boca, U. Pavia, Italy

the Target Spectrometer:

based on high-quality PWO-II

physical goals of PANDA require further development

	PWO-I (CMS)	PWO-II (PANDA)
luminescence maxi- mum, nm	420	420
La, Y concentration level, ppm	100	40
expected energy range of EMC	150MeV - 1TeV	10MeV - 10GeV
light yield, phe/MeV at room temperature	8-12	17-22
EMC operating tem- perature, °C	+18	-25
energy resolution of EMC at 1GeV, %	3,4	2,0

quality control and performance

optical longitudinal transmission

 $\begin{array}{ll} \mbox{uniformity} & \mbox{wavelength at} \\ \mbox{of transv.} & \mbox{$T=50\%$} \\ \mbox{transmission} & \end{array} \Delta \lambda \leq 3 \mbox{nm} \end{array}$

light yield @ 18°C

radiation hardness

tested using γ -rays: ~ 1.2 MeV 60 Co integral dose: 30Gy

$$\Delta k = \ln \left(\frac{T_{bef}}{T_{after}} \right) \cdot \frac{1}{d}$$

acceptance limit: $\Delta k < 1.1 \text{ m}^{-1}$

• light yield measurement

temperature dependence of luminescence

overall quality of the available BTCP crystals

remaining PWO manufacturer

SICCAS – Shanghai, China

- R&D continued in parallel
- Bridgeman technology (not comparable to BTCP)
- fully acceptable crystals delivered in the past
- presently search for appropriate raw material and optimization of technology

CRYTUR – Turnov, Czech Republic

- R&D phase just started (June 2014)
- Czochralsky technology (identical to BTCP)
- know-how and raw material still available

former production @ SICCAS

• recent delivery from SICCAS (2014 - 2015)

SICCAS ID	T(360	T(420	T(620	LY(T=+18 C, t=100	LY(100	dk(420 nm)
	%	%	%	phe/MeV	at T=18C, %	m ⁻¹
limits	≥35	≥ 60	≥ 70	≥16	> 90	< 1.1
1466	31,2	56,9	72,0	23,4	90,1	0,86
1467	20,6	55,8	71,1	21,4	90,4	0,71
1468	21,5	56,5	69,7	19,9	89,9	0,65
1469	26,9	56,9	69,0	21,2	90,7	0,44
1470	25,5	56,2	70,3	22,8	90,0	1,33
1471	24,7	57,8	70,8	20,6	90,5	0,80
1472	33,6	59,1	72,1	20,7	90,1	0,16
1473	22,2	60,3	72,2	20,8	90,7	0,71
1474	23,2	60,5	72,2	20,3	89,9	0,59
1475	35,0	65,2	78,0	22,0	91,4	0,84

1471	24,7	57,8	70,8	20,6	90,5	0,80
1472	33,6	59,1	72,1	20,7	90,1	0,16
1473	22,2	60,3	72,2	20,8	90,7	0,71
1474	23,2	60,5	72,2	20,3	89,9	0,59
1475	35,0	65,2	78,0	22,0	91,4	0,84

recent delivery from SICCAS

• start results @ CRYTUR (1)

supported by: RINP Minsk: M. Korjik NEOCHEM, Moscow: Dosovitskyi

• first experiences under different conditions: small test samples

first and second full size ingot (~ 23cm long)

• start results @ CRYTUR (2)

test crystal: 20 x 20 x 200 mm³

 longitudinal inhomogeneity scattering centers
 sufficient light yield

Longitudinal induced absorption coefficient of CRYTUR PWO

consequences of cooling

- fast decay kinetics even at T=-25°C:
- constant temperature gradient:

 $LY(100ns)/LY(1\mu s) > 0.9$ $LY(-25^{\circ}C)/LY(+18^{\circ}C) \sim 3.9$

•,,no" statistical recovery of radiation damage at T=-25°C asymptotic light loss correlated with Δk (@RT)

• stimulated recovery of radiation damage

exposed to integral dose of 60 Co: D = 30Gy

V. Dormenev et al., NIM A623 (2010) 1082

light collection in tapered crystals

linearization achieved via de-polishing of one side face roughness: $R = 0.3 \mu m$ (E. Auffray, CERN) but: loss of light independent of radiation damage

• the Target Spectrometer: Barrel

- 16 slices
- pointing off-target
- 11 360 crystals
- 200mm long (22X_o)
- 2 x 11 tapered shapes

the Target Spectrometer: Forward Endcap

the Target Spectrometer: Forward Endcap

• **photosensors** Large Area Avalanche Photo Diodes (LAAPD)

in collaboration with Hamamatsu Photonics

- excellent performance @ RT and T = -25°C
- radiation resistent
 up to 10¹³ protons
 in particular at T = -25°C

10x10mm² 5x5mm²

screening of mass production

irradiation with γ-rays @ GI

LAAPD after irradiation:

• APD screening at APD-Lab @ GSI A. Wilms

data provided by Hamamatsu @ 20° C : V_R for gain 100 and breakdown voltage V_B

• photosensors (2):

vacuum photo tetrodes (VPTT)

- to adapt to higher countrates (>>500kHz) in forward direction
- faster response better timing options

✓ new development of Hamamatsu: higher gain, better rate capability

development of low noise/power preamplifiers

- design of descrete components for forward endcap (APD,VPTT)
- ASIC (APFEL) large dynamic range

18mm

- 2 channels / 2 ranges
- overall range 1 10.000
- noise level (cooled) << 2 MeV

the required and achieved performances based on prototypes

prototype performance

PROTO 60

readout via SADC:

further improvement

• prototype performance PROTO 60 15 GeV positrons

EMC Front-End Electronics

EMC digitizer:

- 64 ADC channels (32 dual-gain readout channels)
- 14 bit resolution
- 80-125 MHz sampling rate
- On-line detection of hits, extraction of hit information, pulse pile-up recovery by two Xilinx Kintex-7 FPGAs

Digitizers are located in radiation area → precautions have to be taken against configuration changes and SEU in FPGAs

Pawel Marciniewski 11 Unnsala

the realization of the Forward Endcap

• the Forward Endcap

the Backward Endcap

Relative energy resolution:

- 2-windows filter used
- good linearity (ASIC high/low gain ratio to be improved)
- relative energy resolution at 1 GeV: 4.5%
- *E*_{xtl} used: 11 MeV (conservative!)

PROTO120

PROTO120

@ MAMI Mainz

PROTO120

• Status and timelines of the target EMC

- major components of **Forward Endcap** delivered, assembly has been started
- final design of **Backward Endcap** in 2015
- Barrel:
 - design completed end of 2015
 - missing crystals / LAAPDs
 - mechanics being manufactured

• completion possible until end of 2018/19

• forward EMC

overall sizes: ~3,6 m x 2,2 m active area: 3.0 m x 1.5 m (54x28 cells)

the basic parameters of the Shashlyk modules

1 super-module comprises 4 individual sub-modules

lateral dimensions :	55 x 55 mm ²	
scintillator thickness:	1.5 mm	
lead absorber thickness:	0.3 mm	
reflector foil (Tyvek):	150-200µm	
number of absorber layers:	380	
number of WLS fibers		
(Kuraray Y-11(200)M):	36	
total weight:	22.5 kg	
eff. radiation – length:	$X_0 = 34.9 \text{ mm}$	
eff. Molier – radius:	ρ _M = 59.8 mm	-422.4

• first test @ A2-MAMI

- reconstructed amplitude and energy resolution depend on impact position
- longitudinal nonlinearity
- new design of the module

• the new design (1)

new mold for fiber tiles (*injection molding*): allows perfect alignment onto Pb-sheets via

pins

fixation of reflector sheets reflector:

scintillator tiles in-between two sheets of Tyvek

side surfaces painted

collection of scintillation light:

Y-11(200)M multiglad fiber (1mm^Ø Kuraray) controlled bending of fibers

read-out via photomultipliers

Hamamatsu R7899 (18mm^Ø), CW-base

LY improved from 1.5 ± 0.3 p.e./MeV to 2.8 ± 0.3 p.e./MeV

• the new design (2)

final test with tagged photons @ MAMI

photons between 55 and 650MeV
2x2 matrix of super-modules
movable relative to photon beam

• digitization 160MHz SADC (SADC shows saturation, results limited to low energies)

• final test with tagged photons @ MAMI (2)

• final test with tagged photons @ MAMI (3)

