Pion Form Factor Projections at the EIC

https://arxiv.org/abs/2403.06000

Love Preet

University of Regina

EIC Meson SF WG meeting Meeting

Oct 17, 2024

DEMP reactions

- Form factor measurements through Deep Exclusive Meson Production (DEMP) reactions.
- For π^+ , K⁺ electroproduction reactions:

 $e + p
ightarrow e^{'} + \pi^{+} + n \
ightarrow e^{'} + K^{+} + \Lambda/\Sigma^{0}$

- At Jlab, we detect e', π^+ or K⁺, and reconstruct n or Λ/Σ^0 .
- At EIC (triple coincidence experiment), we need to track all the three final state particles.
 - Missing momentum resolution is insufficient to uniquely reconstruct recoil.
- Need an event generator!

Kinematic variables

• Basic kinematic invariants can be written as

 $e+p
ightarrow e^{'}_{}+\pi^{+}+n
ightarrow e^{'}_{}+K^{+}+\Lambda/\Sigma^{0}$

 $Ejectile:\pi^{\scriptscriptstyle +},\,K^{\scriptscriptstyle +}$

Recoil : n, Λ , Σ^0

• ep squared CM energy

 $s = (e+p)^2$

• $\gamma^* p$ squared CM energy

 $W^2 = (\gamma^* + p)^2$

• Photon virtuality

 $Q^{2} = -q^{2} = (e - e^{'})^{2}$

• Squared 4-momentum transfer to the nucleon

 $t = (p - Recoil)^2 = (\gamma^* - Ejectile)^2$

Feasibility studies at EIC

- Focus on feasibility studies of **DEMP** reactions through ePIC simulations at EIC.
- The first step will be to generate an event sample.

- Focuses on two key modules:
 - Colliding beam kinematics mode for the Electron-Ion Collider.
 - Fixed target kinematics mode for the SoLID experiment.
- For the EIC, it currently incorporates three reactions:
 - $p(e,e' \pi^+n) \longrightarrow \pi^+$ electroproduction
 - p(e,e' K⁺Λ)
 p(e,e' K⁺Σ⁰)
 K⁺ electroproduction

- Consider the head-on collision between the electrons & protons at different beam energies, including, $5(e) \times 41(p)$, $5(e) \times 100(p)$, $10(e) \times 100(p)$, and $18(e) \times 275(p)$.
- It is a weighted event generator.

https://github.com/JeffersonLab/DEMPgen

• How does the generator work?

Described based on the latest release, <u>DEMPgen – v1.2.0</u>

• How does the generator work?

Initialization & PSF check

• Start initialization by reading an input .json file containing several input parameters, such as beam energies, requested events, output file type, electron energies, electron and ejectile angles, etc.

Consider $5(e) \times 100(p)$ beam energy combination for π^+ reaction:

User-defined limits:

e_En_Low	e_En_High	e_Theta_Low	e_Theta_High	Ejectile_Theta_Low	Ejectile_Theta_High	
2.5	12.5	60.0	175.0	0.0	50.0	

• Phase Space Factor (PSF) module constrain the user-defined electron and ejectile energy/angle ranges based on the kinematic variable cuts (Q², W, and -t).

Allowed phase space limits:

e_En_Low	e_En_High	$e_{Theta_{Low}}$	e_Theta_High	Ejectile_Theta_Low	Ejectile_Theta_High
2.5	12.5	60.0	175.0	0.0	50.0
4.9	6.62	116.925	158.785	1.5	50.0

- Calculate the PSF, which is the fraction of the total kinematically accessible phase space that is covered by the event generator, using constrained ranges.
 - Critical for calculating event weights.

 $PSF = (E_{e'Max} - E_{e'Min})d\Omega_{e'}(\theta, \phi) d\Omega_{Ejectile}(\theta, \phi)$

• Time-efficient, with more recorded events per file, and without wasting CPU resources.

• How does the generator work?

Cross section calculations

• Exclusive reaction cross-section in the collider frame is:

$$\frac{d^{5}\sigma}{dE_{e^{'}}^{Col}d\Omega_{e^{'}}^{Col}d\Omega_{Ej}^{Col}} = (\Gamma_{\nu}^{Col}) \begin{pmatrix} \frac{d\Omega_{Ej}^{CM}}{d\Omega_{Ej}^{Col}} \end{pmatrix} \begin{pmatrix} \frac{d^{2}\sigma}{d\Omega_{Ej}^{CM}} \end{pmatrix} \longrightarrow \text{Modified}$$

$$\text{Virtual photon flux factor} \qquad \text{Jacobian for the conversion} \text{from CM to Col frame}$$

$$\frac{d^{2}\sigma}{d\Omega_{Ej}^{CM}} = J \begin{pmatrix} \frac{d\sigma_{T}}{dt} + \epsilon \frac{d\sigma_{L}}{dt} \end{pmatrix}$$

$$\text{Jacobian} \qquad \text{Parametrized theoretical models}$$

Parametrization of theoretical models for $\pi^+\& K^+$ modules

- For the p(e,e' π⁺n) module, the generator uses the Regge-based p(e,e' π⁺n) model from T. K. Choi, K. J. Kong, and B. G. Yu (CKY) arXiv 1508.00969
 - MC event generator created by parametrizing CKY σ_L , σ_T for 3<Q²<35, 2<W<10.2, 0<-t<1.3.
 - Parametrize in step sizes of 0.2 GeV in W and 1 GeV² in Q^2 .
 - Parametrize σ_L , σ_T with landau, exponential, and polynomial.
- Two channels for the kaon module.
- For both $p(e,e' K^+\Lambda/\Sigma^0)$ modules, the generator uses the Regge-based $p(e,e' K^+\Lambda/\Sigma^0)$ model from M. Vanderhaeghen, M. Guidal, and J. -M. Laget (VGL).
 - MC event generator created by parametrizing VGL σ_L , σ_T for 1<Q²<35, 2<W<10, 0<-t<2.
 - Parametrize in step sizes of 1 GeV in W and 1 GeV² in Q^2 .
 - Parametrize σ_L , σ_T with exponential and polynomial.

T. K. Choi, K. J. Kong, and B. G. Yu, Journal of the Korean Physical Society 67, 1089 (2015), VGL Model - M. Guidal, J. -M. Laget, M. Vanderhaeghen, Physical Review C 61 (2000) 025204.

• How does the generator work?

Output format

• Produce output in one of these three options: LUND, Pythia6, or HEPMC3, with an optional ROOT output format.

Colliding beams

• Generate a txt file, regardless of the choice, that contains additional information about events, including requested, generated, and those failed due to various cuts, etc.

E 1 1 5 U GEV MM	1217214746062	Event weig	;ht						
P 1 0 11 6.123233963758798e-16 0.0000000000000000e+00 -4.999999973888007e+00 5.000000000000000e+00 5.109989488070365e-04 4 P 2 0 2212 -0.00000000000000000000000000000000000									
<pre>V -1 0 [1,2] P 3 -1 11 -4.765207341187158e+00 -3.732537034594943e-01 -2.925841675750566e+00 5.604201022833585e+00 5.109989383783055e-04 1 P 4 -1 211 3.968428136943284e+00 -1.531575588721116e-01 4.701276523050274e+00 6.155758271509020e+00 1.395701800000037e-01 1 P 5 -1 2112 7.967792042438746e-01 5.264112623316060e-01 3.422456517881229e+01 3.425077533101398e+01 9.395654205001728e-01 1</pre>									
particle_line	part_id	parent_vertex_id	pdg_id	px	ру	pz	energy	particle_mass	status
Example of HEPMC3 format									
							Scattered pa	rticles	

Simulation studies using ePIC simulations

• Incoming beams collide at a crossing angle of 25 mrad.

• Monte Carlo afterburner includes crossing angle, beam energy spread, angular beam divergence, bunch length, etc.

- DEMPgen has the capability to generate events directly with the correct crossing angles.
 - Turned it off to maintain compatibility with EIC simulations framework.

ePIC detectors (central & far-forward)

Spatial topology of weighted truth variables at ePIC detector

- Used simulated files for 10(e) on 100(p) GeV collisions from the recent campaign 24.09.0.
- e', π^+ hits the central detector, n hits far-forward detectors (mainly ZDC).

Spatial topology of weighted rec variables at ePIC detector

- Used simulated files for 10(e) on 100(p) GeV collisions from the recent campaign 24.09.0.
- e', π^+ hits the central detector, n hits far-forward detectors (mainly ZDC).

[1 cluster events with E>40 GeV, $\theta^* {<} 4.0$ mRad]

rec stands for reconstructed information

 θ^* is the rotation by 25 mRad around proton axis

Neutrons truth vs rec distribution

• Reconstructed neutrons using newly merged branch ReconstructedFarForwardZDCNeutrons.

n truth θ^* vs ϕ^* around p axis

 θ^{*} , ϕ^{*} is the rotation by 25 mRad around proton axis

Spatial topology of weighted rec neutrons at ePIC detector

- Reconstructed neutrons using newly merged branch ReconstructedFarForwardZDCNeutrons.
 - Reconstructed neutrons include all the clusters.

Rate/bin

10-5

10-6

n X vs Y around proton axis at Z = 35 m (rec $\theta^* < 4.0 \text{ mBad}$, E > 40 GeV)

Recw rot PosXY

1534435

-1.48

Entripe

Mean

10-4₽

y (mm)

150

Accessing form factor through π^+ electroproduction

- Measure $e'\pi^+n$ triple coincidence events.
- At small -t, the pion pole process dominates $\sigma_{\rm L}$.
- In the Born model, F_π^2 appear as [In practice one uses a more sophisticated model]

$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_{\pi}^2)^2} g_{\pi pn}^2(t) F_{\pi}^2(Q^2,t)$$

- Q^2 , -t reconstruction resolution is crucial for extracting F_{π}^2 from the measured cross section.
- Different approaches tried to reconstruct -t.

nodel]

$$= (e - e')^{2} F_{\pi}^{2}(Q^{2}, t)$$

$$= \begin{pmatrix} g_{\pi pn}^{2}(t) \\ g_{\pi pn}^{2}(t) \end{pmatrix}$$

 Q^2

 $e + p \rightarrow e' + \pi^+ + n$

-t reconstruction using lepton-meson vertex (Method - 1)

-t reconstruction using proton-baryon vertex (Method - 2)

-t reconstruction using pT of e' and π^+ (Method - 3)

24

-t reconstruction using corrected n track (Method - 4)

 $-t_{truth} = -(\gamma^* - \pi^+)^2$

Using missing momentum information,

 $p_{miss} = |ec{p_e} + ec{p_p} - ec{p_{e'}} - ec{p_{\pi^+}}|$

And replaced θ_{Miss} , ϕ_{Miss} with θ_{ZDC} , ϕ_{ZDC} , and fixed the neutron mass.

-t rec_corr vs -t truth Distribution

Diff. b/w rec & detected simulated angles for the neutrons

• Considered - $0.09 < \Delta\theta < 0.13$ & - $40 < \Delta\phi < 40$ events.

Removed SIDIS background with W cut

Comparison of Δ -t from various methods

• Cuts: -t, E, $\Delta\theta$, $\Delta\phi$, Q², and W.

Neutron track momentum resolution

• Cuts: -t, E, $\Delta\theta$, $\Delta\phi$, Q², and W.

n Track Momentum Resolution Distribution (%)

Using corrected neutron track (or Method - 4).

 $\Delta p_n/p_{ntruth}$ (%)

Detection efficiency per (Q^2,t) bin

• Cuts: -t, E, $\Delta \theta$, $\Delta \phi$, Q², and W.

[Using ECCE simulations for 5(e) on 100(p)]

Detection efficiency best in crucial low -t region.

Form factor projections

• Cuts: -t, E, $\Delta \theta$, $\Delta \phi$, Q², and W.

Higher Q^2 is now more feasible than before !

Summary

- Results so far look more promising than the previous simulation framework.
- Reconstructed neutrons using B0 EMCAL information, enable achieving higher values of -t.
- Accessing -t distribution over a wide range by combining information from ZDC HCAL & B0 EMCAL.
 To-do list:
- Focus on the kaon electro-production reaction.
- Reconstruction of Λ/Σ^0 is considerably more challenging.
- Extend the parametrization ranges for the π^+ module to higher Q^2 .
- Improve the parametrization for the π^+ module in DEMPgen.
- Incorporate the studies with the **Deuteron** beam in DEMPgen.
- Will update the status in the upcoming meetings.

Thank you !

G. M. Huber and S. J. D. Kay

EIC-Canada

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), FRN: SAPPJ-2023-00041

& UK Research and Innovation: Science and Technology Facilities council (UKRI:STFC) grant ST/W004852/1

Email : navisaharan3@gmail.com