An brief overview of
 Generalised Partons Distributions

Cédric Mezrag

CEA Saclay, Irfu DPhN

February $1^{\text {st }}, 2024$

Nuclear Physics Seminar Series at CUA

Introduction : probing the internal structure of matter

Scattering experiments

A key tool to understand the structure of matter

- Fraunhofer diffraction

Simulation of Fraunhofer diffraction due to a rectangle slit.
source : Wikimedia Commons

- Far field diffraction
- Diffraction
\rightarrow Fourier transform of transmission coefficient

Scattering experiments

A key tool to understand the structure of matter

- Fraunhofer diffraction
- X-ray scattering

Silicium crystal diffractive pattern
source: UK's national synchrotron

- X-ray wavelength $\rightarrow \lambda \simeq$ typical size
- Bragg Law
- Diffraction pattern
\rightarrow Fourier transform of electronic density
- Provide information on the cristal structure

Scattering experiments

A key tool to understand the structure of matter

- Fraunhofer diffraction
- X-ray scattering
- Rutherford experiment

- α particles scattering on a gold foil
- Some of which are scattered at large angles
- Invalidate the Thomson Model (Plum Pudding)
- Allows to develop the Rutherford planetary model
source : Wikimedia Commons

A pattern a study matter

- Scattering without breaking
- Fourier transform relation between matter structure and diffraction figure
- Repeat itself for different orders of magnitude
- Can we extend that to hadron structure?

A pattern a study matter

- Scattering without breaking
- Fourier transform relation between matter structure and diffraction figure
- Repeat itself for different orders of magnitude
- Can we extend that to hadron structure?

A pattern a study matter

- Scattering without breaking
- Fourier transform relation between matter structure and diffraction figure
- Repeat itself for different orders of magnitude
- Can we extend that to hadron structure?

Large virtuality and factorisation

- When the photon is strongly virtual : $Q^{2}=-q^{2} \gg M^{2}, t$

- Decomposition of DVCS between perturbative (green) and non-perturbative (blue) subparts.
- Perturbative part \rightarrow description of the interaction between the probe and a parton inside hadron
- Non-perturbative part : description of a parton hadron amplitude called Generalised Partons Distributions (GPDs)
- GPDs is where the information on the hadrons structure lies.

Generalised Parton Distributions

References

- General review on GPDs:
M. Diehl, Phys.Rept., 2003, 388, 41-277
A. Belitsky and A. Radyushkin, Phys.Rept., 2005, 418, 1-387
- Modern phenomenological applications K. Kumericki et al., Eur. Phys. J., 2016, A52, 157
- Future experimental opportunities EIC Yellow Report, arXiv:2103.05419

Definitions and some properties

Formal Definition for the pion

$$
\begin{aligned}
& H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& H_{\pi}^{g}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| G^{+\mu}\left(-\frac{z}{2}\right) G_{\mu}^{+}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0}
\end{aligned}
$$

D. Müller et al., Fortsch. Phy. 42101 (1994)
X. Ji, Phys. Rev. Lett. 78, 610 (1997)
A. Radyushkin, Phys. Lett. B380, 417 (1996)

Formal Definition for the pion

$$
\begin{aligned}
& H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& H_{\pi}^{g}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| G^{+\mu}\left(-\frac{z}{2}\right) G_{\mu}^{+}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0}
\end{aligned}
$$

D. Müller et al., Fortsch. Phy. 42101 (1994)
X. Ji, Phys. Rev. Lett. 78, 610 (1997)
A. Radyushkin, Phys. Lett. B380, 417 (1996)

- x : average momentum fraction carried by the active parton along the lightcone

Formal Definition for the pion

$$
\begin{aligned}
& H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& H_{\pi}^{g}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| G^{+\mu}\left(-\frac{z}{2}\right) G_{\mu}^{+}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0}
\end{aligned}
$$

D. Müller et al., Fortsch. Phy. 42101 (1994)
X. Ji, Phys. Rev. Lett. 78, 610 (1997)
A. Radyushkin, Phys. Lett. B380, 417 (1996)

- x : average momentum fraction carried by the active parton along the lightcone
- $\xi=-2 \Delta \cdot n / P \cdot n$ is the skewness parameter $\xi \simeq \frac{x_{B}}{2-x_{B}}$
- $t=\Delta^{2}$: the Mandelstam variable

Formal Definition for the pion

$$
\begin{aligned}
& H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& H_{\pi}^{g}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| G^{+\mu}\left(-\frac{z}{2}\right) G_{\mu}^{+}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0}
\end{aligned}
$$

D. Müller et al., Fortsch. Phy. 42101 (1994)
X. Ji, Phys. Rev. Lett. 78, 610 (1997)
A. Radyushkin, Phys. Lett. B380, 417 (1996)

- x : average momentum fraction carried by the active parton along the lightcone
- $\xi=-2 \Delta \cdot n / P \cdot n$ is the skewness parameter $\xi \simeq \frac{x_{B}}{2-x_{B}}$
- $t=\Delta^{2}$: the Mandelstam variable
- Caveat! In gauges other than the lightcone one, a Wilson line is necessary to make the GPDs gauge invariant

Kinematical Range

Different values of (x, ξ) yields different lightfront interpretations:

- Modifies our understanding of what is probed
- Different type of contributions
- It determines two big regions
- Relevant for evolution equations
- $|\xi|>1$ region of Generalised Distribution Amplitudes (GDA)

Connection with the PDF

Coming back to the definition:

$$
\begin{aligned}
& H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& H_{\pi}^{g}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| G^{+\mu}\left(-\frac{z}{2}\right) G_{\mu}^{+}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0}
\end{aligned}
$$

Connection with the PDF

Coming back to the definition:

$$
\begin{aligned}
& H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& H_{\pi}^{g}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| G^{+\mu}\left(-\frac{z}{2}\right) G_{\mu}^{+}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0}
\end{aligned}
$$

When $\Delta \rightarrow 0$, then $\left(\xi=-2 \Delta \cdot n / P \cdot n ; t=\Delta^{2}\right) \rightarrow(0,0)$

Connection with the PDF

Coming back to the definition:

$$
\begin{aligned}
& H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& H_{\pi}^{g}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i \times P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| G^{+\mu}\left(-\frac{z}{2}\right) G_{\mu}^{+}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0}
\end{aligned}
$$

When $\Delta \rightarrow 0$, then $\left(\xi=-2 \Delta \cdot n / P \cdot n ; t=\Delta^{2}\right) \rightarrow(0,0)$

$$
\begin{aligned}
& H_{\pi}^{q}(x, 0,0)=q(x) \Theta(x)-\bar{q}(-x) \Theta(-x) \\
& H_{\pi}^{g}(x, 0,0)=x g(x) \Theta(x)-x g(-x) \Theta(-x)
\end{aligned}
$$

In the limit $(\xi, t) \rightarrow(0,0)$, one recover the PDFs.

Connection with the form factor

Looking at the quark definition:

$$
H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, \mathrm{z}=0}
$$

we would recover the Form Factor if we could make the operator "local".

Connection with the form factor

Looking at the quark definition:

$$
H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0}
$$

we would recover the Form Factor if we could make the operator "local". Simple way to do that \rightarrow integrate on Fourier conjugate variable:

$$
\begin{aligned}
\int \mathrm{d} x H_{\pi}^{q}(x, \xi, t) & =\left.\frac{1}{2} \int \delta\left(P^{+} z^{-}\right)\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& =\frac{1}{2 P^{+}}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}(0) \gamma^{+} \psi^{q}(0)\left|P-\frac{\Delta}{2}\right\rangle
\end{aligned}
$$

Connection with the form factor

Looking at the quark definition:

$$
H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0}
$$

we would recover the Form Factor if we could make the operator "local". Simple way to do that \rightarrow integrate on Fourier conjugate variable:

$$
\begin{aligned}
\int \mathrm{d} x H_{\pi}^{q}(x, \xi, t) & =\left.\frac{1}{2} \int \delta\left(P^{+} z^{-}\right)\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& =\frac{1}{2 P^{+}}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}(0) \gamma^{+} \psi^{q}(0)\left|P-\frac{\Delta}{2}\right\rangle
\end{aligned}
$$

We recover the pion electromagnetique Form Factor

GPD and the hadron $2+1$ Structure

Prerequisite

- Hadron description in coordinate space: position of its center of mass in the transverse plane

GPD and the hadron $2+1$ Structure

Prerequisite

- Hadron description in coordinate space: position of its center of mass in the transverse plane
- Necessary to define a "center of mass" of the hadron!
- Turn to Galileen subgroup acting in the 2D transverse plane
- It yields a centre of mass w.r.t. the p_{i}^{+}

$$
b_{\perp}=\frac{\sum_{i} p_{i}^{+} b_{\perp}^{i}}{\sum_{i} p_{i}^{+}}
$$

- Hadron description in coordinate space: position of its center of mass in the transverse plane
- Necessary to define a "center of mass" of the hadron!
- Turn to Galileen subgroup acting in the 2D transverse plane
- It yields a centre of mass w.r.t. the p_{i}^{+}

$$
b_{\perp}=\frac{\sum_{i} p_{i}^{+} b_{\perp}^{i}}{\sum_{i} p_{i}^{+}}
$$

Immediate consequences for GPDs

GPDs encode a kick in the momentum fraction along the lightfront of 2ξ \rightarrow unless $\xi=0$ the "centre of mass" is modified between the initial and final Proton

- Hadron description in coordinate space: position of its center of mass in the transverse plane
- Necessary to define a "center of mass" of the hadron!
- Turn to Galileen subgroup acting in the 2D transverse plane
- It yields a centre of mass w.r.t. the p_{i}^{+}

$$
b_{\perp}=\frac{\sum_{i} p_{i}^{+} b_{\perp}^{i}}{\sum_{i} p_{i}^{+}}
$$

Immediate consequences for GPDs

GPDs encode a kick in the momentum fraction along the lightfront of 2ξ \rightarrow unless $\xi=0$ the "centre of mass" is modified between the initial and final Proton

A probabilistic interpretation can be obtained only for $\xi=0$

GPD and the hadron $2+1$ Structure

Examples of $2+1 \mathrm{D}$ pictures

$$
\rho\left(x, \tilde{b}_{\perp}\right)=\int \frac{\mathrm{d}^{2} \Delta_{\perp}}{(2 \pi)^{2}} e^{i \Delta_{\perp} \tilde{b}_{\perp}} H\left(x, 0,-\Delta_{\perp}^{2}\right)
$$

M. Burkardt, PRD 62 (2000) 071503, PRD 66 (2002) 119903 (erratum)

Computations

fig. from C. Mezrag et al., PLB 741 (2015) 190-196

Place of GPDs in the Hadron physics context

figure from A. Accardi et al., Eur.Phys.J.A 52 (2016) 9, 268

Interpretation of GPDs II

Connection to the Energy-Momentum Tensor

How energy, momentum, pressure are shared between quarks and gluons

Caveat: renormalization scheme and scale dependence
C. Lorcé et al., PLB 776 (2018) 38-47, M. Polyakov and P. Schweitzer, IJMPA 33 (2018) 26, 1830025
C. Lorcé et al., Eur.Phys.J.C 79 (2019) 1, 89

Interpretation of GPDs II

Connection to the Energy-Momentum Tensor

How energy, momentum, pressure are shared between quarks and gluons
Caveat: renormalization scheme and scale dependence
C. Lorcé et al., PLB 776 (2018) 38-47, M. Polyakov and P. Schweitzer, IJMPA 33 (2018) 26, 1830025
C. Lorcé et al., Eur.Phys.J.C 79 (2019) 1, 89

$$
\left\langle p^{\prime}\right| T_{q, g}^{\mu \nu}|p\rangle=2 P^{\mu} P^{\nu} A_{q, g}(t ; \mu)+\frac{1}{2}\left(\Delta^{\mu} \Delta^{\nu}-g^{\mu \nu} \Delta^{2}\right) C_{q, g}(t ; \mu)+2 M^{2} g^{\mu \nu} \bar{C}_{q, g}(t ; \mu)
$$

Interpretation of GPDs II

Connection to the Energy-Momentum Tensor

How energy, momentum, pressure are shared between quarks and gluons
Caveat: renormalization scheme and scale dependence
C. Lorcé et al., PLB 776 (2018) 38-47, M. Polyakov and P. Schweitzer, IJMPA 33 (2018) 26, 1830025
C. Lorcé et al., Eur.Phys.J.C 79 (2019) 1, 89

$$
\left\langle p^{\prime}\right| T_{q, g}^{\mu \nu}|p\rangle=2 P^{\mu} P^{\nu} A_{q, g}(t ; \mu)+\frac{1}{2}\left(\Delta^{\mu} \Delta^{\nu}-g^{\mu \nu} \Delta^{2}\right) C_{q, g}(t ; \mu)+2 M^{2} g^{\mu \nu} \bar{C}_{q, g}(t ; \mu)
$$

$$
\int_{-1}^{1} \mathrm{~d} \times \times H_{q}(x, \xi, t ; \mu)=A_{q}(t ; \mu)+\xi^{2} C_{q}(t ; \mu)
$$

- Ji sum rule (nucleon)
- Fluid mechanics analogy
M.V. Polyakov PLB 555, 57-62 (2003)

Connection with experimental data

- GPDs are not directly connected to experimental cross sections
- They enter the description of experimental amplitude through Compton Form Factor:

$$
\underbrace{\mathcal{H}\left(\xi, t, Q^{2}\right)}_{\text {Exp. Amplitude }}=\int_{-1}^{1} \frac{\mathrm{~d} x}{\xi} \underbrace{C\left(\frac{x}{\xi}, \frac{Q^{2}}{\mu^{2}} ; \alpha_{s}\right)}_{p Q C D} H\left(x, \xi, t, \mu^{2}\right)
$$

- The coefficient function C is computed using pertubative QCD up to a given order in α_{S}.
- This yield a deconvolution problem that we will discuss later

Questions ?

Questions ?

- We looked for a way to performed internal tomography of hadrons (similarly to X-ray cristallography for instance)
- We introduced Deeply Virtual Compton Scattering (DVCS) as an exclusive process
- We introduced GPDs as a way to parametrise DVCS
- We realised that GPDs contained the 3D information we are after and are connected to the energy momentum tensor
- We saw that GPDs are connected to data through a convolution

Evolution properties of GPDs

UV singularities of operators

- Coming back to the operator definition of GPDs:

$$
\left\langle\pi, P+\frac{\Delta}{2}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)\left|\pi, P-\frac{\Delta}{2}\right\rangle
$$

UV singularities of operators

- Coming back to the operator definition of GPDs:

$$
\left\langle\pi, P+\frac{\Delta}{2}\right| \underbrace{\bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)}_{\text {singular when } z^{2} \rightarrow 0}\left|\pi, P-\frac{\Delta}{2}\right\rangle
$$

UV singularities of operators

- Coming back to the operator definition of GPDs:

$$
\left\langle\pi, P+\frac{\Delta}{2}\right| \underbrace{\bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)}_{\text {singular when } z^{2} \rightarrow 0}\left|\pi, P-\frac{\Delta}{2}\right\rangle
$$

- Need to treat short-distance (=UV) and collinear singularities

Need to renormalise our non-local operator

UV singularities of operators

- Coming back to the operator definition of GPDs:

$$
\left\langle\pi, P+\frac{\Delta}{2}\right| \underbrace{\bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)}_{\text {singular when } z^{2} \rightarrow 0}\left|\pi, P-\frac{\Delta}{2}\right\rangle
$$

- Need to treat short-distance (=UV) and collinear singularities

Need to renormalise our non-local operator

- When $z \rightarrow 0$ working with renormalised quark fields $\psi_{R}=\left(Z_{2}\right)^{-1} \psi$ is not enough to treat the UV singularity

UV singularities of operators

- Coming back to the operator definition of GPDs:

$$
\left\langle\pi, P+\frac{\Delta}{2}\right| \underbrace{\bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \psi\left(\frac{z}{2}\right)}_{\text {singular when } z^{2} \rightarrow 0}\left|\pi, P-\frac{\Delta}{2}\right\rangle
$$

- Need to treat short-distance (=UV) and collinear singularities

Need to renormalise our non-local operator

- When $z \rightarrow 0$ working with renormalised quark fields $\psi_{R}=\left(Z_{2}\right)^{-1} \psi$ is not enough to treat the UV singularity

Two approaches (among others)

- Renormalisation of local operators
- Renormalisation using "in partons" matrix elements

Partons in partons GPDs

- Instead of moments, one can consider partons-in-partons GPDs

Partons in partons GPDs

- Instead of moments, one can consider partons-in-partons GPDs

- Possible to look because the singularity is a property of the operator, not of the external states.

Partons in partons GPDs

- Instead of moments, one can consider partons-in-partons GPDs

- Possible to look because the singularity is a property of the operator, not of the external states.
- However, it is necessary to choose a scheme which is independent of the external states

Partons in partons GPDs

- Instead of moments, one can consider partons-in-partons GPDs

- Possible to look because the singularity is a property of the operator, not of the external states.
- However, it is necessary to choose a scheme which is independent of the external states

For that purpose, $\overline{\mathrm{MS}}$ is well suited GPDs (3D structure, pressure) become scheme dependent!

First order computation

- On top of scheme, one should also choose a gauge, we picked the lightcone one, where $A^{+}=0$.

First order computation

- On top of scheme, one should also choose a gauge, we picked the lightcone one, where $A^{+}=0$.
- Consequence: it complicates the gluon propagator, but reduce the Wilson line to unity!

First order computation

- On top of scheme, one should also choose a gauge, we picked the lightcone one, where $A^{+}=0$.
- Consequence: it complicates the gluon propagator, but reduce the Wilson line to unity!
- We are left in the quark sector with:

First order computation

- On top of scheme, one should also choose a gauge, we picked the lightcone one, where $A^{+}=0$.
- Consequence: it complicates the gluon propagator, but reduce the Wilson line to unity!
- We are left in the quark sector with:

- Applying dimensional regularisation, and $\overline{M S}$ renormalisation.

First order computation

- On top of scheme, one should also choose a gauge, we picked the lightcone one, where $A^{+}=0$.
- Consequence: it complicates the gluon propagator, but reduce the Wilson line to unity!
- We are left in the quark sector with:

- Applying dimensional regularisation, and $\overline{M S}$ renormalisation.

Final result

$$
H^{i}(x, \xi, t, \mu)=\int_{-1}^{1} \frac{\mathrm{~d} y}{|y|} Z_{i, j}\left(\frac{x}{y}, \frac{\xi}{x}, \alpha_{s}(\mu), \epsilon\right) H_{r e g}^{j}(y, \xi, t, \epsilon)
$$

Renormalisation group

- The previous equation is nice, but interesting on a limited range in μ^{2}

Renormalisation group

- The previous equation is nice, but interesting on a limited range in μ^{2}
- On a wide range of μ we would expect deviations from α_{S} behaviour

Renormalisation group

- The previous equation is nice, but interesting on a limited range in μ^{2}
- On a wide range of μ we would expect deviations from α_{S} behaviour
- Take advantage of the Callan-Symanzik equations.

Renormalisation group

- The previous equation is nice, but interesting on a limited range in μ^{2}
- On a wide range of μ we would expect deviations from α_{S} behaviour
- Take advantage of the Callan-Symanzik equations.

Renormalisation Group

- Knowing the GPD at a scale μ we want to know how it behaves at $\mu+\mathrm{d} \mu$
- we describe perturbatively the impact of this $\mathrm{d} \mu$ leap

$$
H(x, \xi, t, \mu+\mathrm{d} \mu)-H(x, \xi, t, \mu)
$$

- we obtain like this a first-order integro-differential equation
- α_{S} becomes "exponentiated"

Evolution equations for GPDs

Non-Singlet Case

$$
\frac{\mathrm{d} H_{N S}^{q}(x, \xi, t, \mu)}{\mathrm{d} \ln (\mu)}=\frac{\alpha_{s}(\mu)}{4 \pi} \int_{0}^{1} \frac{\mathrm{~d} y}{y} \mathcal{P}_{q \leftarrow q}^{0}\left(\frac{x}{y}, \frac{\xi}{x}\right) H_{N S}^{q}(y, \xi, t, \mu)
$$

Singlet Case

$$
\left.\binom{\frac{\mathrm{d} H_{S}^{q}(x, \xi, t, \mu)}{\mathrm{d} \ln (\mu)}}{\frac{\mathrm{d} H^{\xi}(x, \xi, t, \mu)}{\mathrm{d} \ln (\mu)}}=\frac{\alpha_{s}(\mu)}{4 \pi} \int_{0}^{1} \frac{\mathrm{~d} y}{y}\left(\begin{array}{ll}
\mathcal{P}_{q \leftarrow q}^{0}\left(\frac{x}{y}, \frac{\xi}{x}\right) & \mathcal{P}_{q \leftarrow g}^{0}\left(\frac{x}{y}, \frac{\xi}{x}\right. \\
\mathcal{P}_{g \leftarrow q}^{0}\left(\frac{x}{y}, \frac{\xi}{x}\right) & \mathcal{P}_{g \leftarrow g}^{0}\left(\frac{x}{y}, \frac{\xi}{x}\right.
\end{array}\right) . \begin{array}{l}
H_{S}^{q}(y, \xi, t, \mu) \\
H^{g}(y, \xi, t, \mu)
\end{array}\right)
$$

Evolution equations for GPDs

Non-Singlet Case

$$
\frac{\mathrm{d} H_{N S}^{q}(x, \xi, t, \mu)}{\mathrm{d} \ln (\mu)}=\frac{\alpha_{s}(\mu)}{4 \pi} \int_{0}^{1} \frac{\mathrm{~d} y}{y} \mathcal{P}_{q \leftarrow q}^{0}\left(\frac{x}{y}, \frac{\xi}{x}\right) H_{N S}^{q}(y, \xi, t, \mu)
$$

Singlet Case

$$
\binom{\frac{\mathrm{d} H_{S}^{q}(x, \xi, t, \mu)}{\mathrm{d}(\mathrm{In}(\mu)}}{\frac{\mathrm{d} H^{\xi}(, \xi, t, \mu)}{\mathrm{d} \ln (\mu)}}=\frac{\alpha_{s}(\mu)}{4 \pi} \int_{0}^{1} \frac{\mathrm{~d} y}{y}\left(\begin{array}{ll}
\mathcal{P}_{q \leftarrow q}^{0}\left(\frac{x}{y}, \frac{\xi}{x}\right) & \mathcal{P}_{q \leftarrow g}^{0}\left(\frac{x}{y}, \frac{\xi}{x}\right) \\
\mathcal{P}_{g \leftarrow q}^{0}\left(\frac{x}{y}, \frac{\xi}{x}\right) & \mathcal{P}_{g \leftarrow g}^{0}\left(\frac{x}{y}, \frac{\xi}{x}\right)
\end{array}\right)\binom{H_{S}^{q}(y, \xi, t, \mu)}{H^{g}(y, \xi, t, \mu)}
$$

The \mathcal{P} distributions can in principle be computed in pQCD

DGLAP connection

- Splitting function have been computed at:
- LO $\left(\alpha_{s}\right)$
D. Mueller et al., Fortsch.Phys. 42 101-141, 1994
X. Ji PRD55, 7114-7125, 1997
A. Radyushkin, PRD56, 5524-5557, 1997
- NLO $\left(\alpha_{S}^{2}\right)$
- $\mathrm{N} 2 \mathrm{LO}\left(\alpha_{s}^{3}\right)$
A. Belitsky et al., Nucl.Phys. B574, 347-406, 2000 V.M. Braun et al., JHEP, vol. 02, p. 191, 2019
V.M. Braun et al.,JHEP 06, 037, 2017.

DGLAP connection

- Splitting function have been computed at:
- LO $\left(\alpha_{s}\right)$
D. Mueller et al., Fortsch.Phys. 42 101-141, 1994
X. Ji PRD55, 7114-7125, 1997
A. Radyushkin, PRD56, 5524-5557, 1997
- NLO $\left(\alpha_{S}^{2}\right)$
- $\mathrm{N} 2 \mathrm{LO}\left(\alpha_{s}^{3}\right)$
A. Belitsky et al., Nucl.Phys. B574, 347-406, 2000 V.M. Braun et al., JHEP, vol. 02, p. 191, 2019
V.M. Braun et al.,JHEP 06, 037, 2017.
- In the limit $\Delta \rightarrow 0$, the $H^{q}(x, 0,0, \mu)=q(x, \mu)$
\rightarrow immediate consequence: one should recover the DGLAP evolution equations

DGLAP connection

- Splitting function have been computed at:
- LO $\left(\alpha_{s}\right)$
D. Mueller et al., Fortsch.Phys. 42 101-141, 1994
X. Ji PRD55, 7114-7125, 1997
A. Radyushkin, PRD56, 5524-5557, 1997
- NLO $\left(\alpha_{S}^{2}\right)$
- $\mathrm{N} 2 \mathrm{LO}\left(\alpha_{s}^{3}\right)$
A. Belitsky et al., Nucl.Phys. B574, 347-406, 2000 V.M. Braun et al., JHEP, vol. 02, p. 191, 2019
V.M. Braun et al.,JHEP 06, 037, 2017.
- In the limit $\Delta \rightarrow 0$, the $H^{q}(x, 0,0, \mu)=q(x, \mu)$
\rightarrow immediate consequence: one should recover the DGLAP evolution equations

$$
\lim _{\xi \rightarrow 0} \mathcal{P}\left(\frac{x}{y}, \frac{\xi}{x}\right)=P_{D G L A P}\left(\frac{x}{y}\right)
$$

Other properties

- Charge conservation: the electromagnetic for factor is independent of μ (observable)
- Energy-Momentum Conservation: $\int \mathrm{d} x x(q(x)+g(x))$ is independent of μ
- Continuity at the crossover lines $|x|=|\xi|$

Questions ?

Questions ?

- We needed to take care of singularities, typical of QFT
- We introduced renormalisation constants, a renormalisation scheme and a scale
- Quantities related to GPDs become scale and scheme dependent
- We introduced an integro-differential equation to describe the scale dependence
- Experimental data do not depend on the scale and scheme (in principle)

The Nucleon

Nucleon vs. Pion

Main difference: spin-1/2 \rightarrow more tensorial structures!

$$
\begin{aligned}
& \left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& =\frac{1}{2 P^{+}}\left[H^{q}(x, \xi, t) \bar{u} \gamma^{+} u+E^{q}(x, \xi, t) \bar{u} \frac{i \sigma^{+\alpha} \Delta_{\alpha}}{2 M} u\right] . \\
& \left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \gamma_{5} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& =\frac{1}{2 P^{+}}\left[\tilde{H}^{q}(x, \xi, t) \bar{u} \gamma^{+} \gamma_{5} u+\tilde{E}^{q}(x, \xi, t) \bar{u} \frac{\gamma_{5} \Delta^{+}}{2 M} u\right] .
\end{aligned}
$$

Nucleon vs. Pion

Main difference: spin-1/2 \rightarrow more tensorial structures!

$$
\begin{aligned}
& \left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& =\frac{1}{2 P^{+}}\left[H^{q}(x, \xi, t) \bar{u} \gamma^{+} u+E^{q}(x, \xi, t) \bar{u} \frac{i \sigma^{+\alpha} \Delta_{\alpha}}{2 M} u\right] . \\
& \left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \gamma_{5} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& =\frac{1}{2 P^{+}}\left[\tilde{H}^{q}(x, \xi, t) \bar{u} \gamma^{+} \gamma_{5} u+\tilde{E}^{q}(x, \xi, t) \bar{u} \frac{\gamma_{5} \Delta^{+}}{2 M} u\right] .
\end{aligned}
$$

The nucleon has 4 chiral-even and 4 chiral-odd quark GPDs. All previous properties apply

Probing GPDs through exclusive processes

Experimental connection to GPDs

Observables (cross sections, asymmetries ...)

Experimental connection to GPDs

Experimental connection to GPDs

Experimental connection to GPDs

- CFFs play today a central role in our understanding of GPDs
- Extraction generally focused on CFFs

Deep Virtual Compton Scattering

- Best studied experimental process connected to GPDs
\rightarrow Data taken at Hermes, Compass, JLab 6, JLab 12

Deep Virtual Compton Scattering

- Best studied experimental process connected to GPDs
\rightarrow Data taken at Hermes, Compass, JLab 6, JLab 12
- Interferes with the Bethe-Heitler (BH) process
- Blessing: Interference term boosted w.r.t. pure DVCS one
- Curse: access to the angular modulation of the pure DVCS part difficult
M. Defurne et al., Nature Commun. 8 (2017) 1, 1408

Theory of DVCS

where
The differential $e p \rightarrow e p \gamma$ cross section is given by

$$
\frac{d^{5} \sigma}{d x_{B} d Q^{2} d|t| d \phi d \phi_{S}}=\frac{\alpha^{3} x_{B}}{16 \pi^{24} \sqrt{1+\epsilon^{2}}}|\mathcal{T}|^{2}
$$

e.g. K. Kumericki et al., EPJ A 52 (2016) 6, 157

$$
|\mathcal{T}|^{2}=\left|\mathcal{T}_{\mathrm{BH}}+\mathcal{T}_{\mathrm{DVCS}}\right|^{2}=\left|\mathcal{T}_{\mathrm{BH}}\right|^{2}+\left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2}+\mathcal{J}
$$

Theory of DVCS

The differential $e p \rightarrow e p \gamma$ cross section is given by

$$
\frac{d^{5} \sigma}{d x_{B} d Q^{2} d|t| d \phi d \phi_{S}}=\frac{\alpha^{3} x_{B}}{16 \pi^{24} \sqrt{1+\epsilon^{2}}}|\mathcal{T}|^{2},
$$

where
e.g. K. Kumericki et al., EPJ A 52 (2016) 6, 157

$$
|\mathcal{T}|^{2}=\left|\mathcal{T}_{\mathrm{BH}}+\mathcal{T}_{\mathrm{DVCS}}\right|^{2}=\left|\mathcal{T}_{\mathrm{BH}}\right|^{2}+\left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2}+\mathcal{J}
$$

The different contributions are then analysed in terms of harmonics of ϕ :

$$
\begin{aligned}
& \mathcal{J} \propto c_{0}^{\mathcal{J}}+\sum_{n=1}^{3}\left[c_{n}^{\mathcal{J}} \cos (n \phi)+s_{n}^{\mathcal{J}} \sin (n \phi)\right] \\
& \left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2} \propto c_{0}+\sum_{n=1}^{2}\left[c_{n} \cos (n \phi)+s_{n} \sin (n \phi)\right]
\end{aligned}
$$

Strategy

- The coefficients are extracted from data
- GPDs enter the description of the coefficients through Compton Form Factors

Recent CFF extractions

M. Cuic̀ et al., PRL 125, (2020), 232005

H. Moutarde et al., EPJC 79, (2019), 614

- Recent effort on bias reduction in CFF extraction (ANN)
additional ongoing studies, J. Grigsby et al., PRD 104 (2021) 016001
- Studies of ANN architecture to fulfil GPDs properties (dispersion relation,polynomiality,...)
- Recent efforts on propagation of uncertainties (allowing impact studies for JLAB12, EIC and EicC)

QCD corrections to DVCS

- At LO, the DVCS coefficient function is a QED one

QCD corrections to DVCS

- At LO, the DVCS coefficient function is a QED one
- At NLO, gluon GPDs play a significant role in DVCS

H. Moutarde et al., PRD 87 (2013) 5, 054029

QCD corrections to DVCS

- At LO, the DVCS coefficient function is a QED one
- At NLO, gluon GPDs play a significant role in DVCS

H. Moutarde et al., PRD 87 (2013) 5, 054029
- Recent N2LO studies, impact needs to be assessed
V. Braun et al., JHEP 09 (2020) 117

Finite t corrections

Kinematical corrections in t / Q^{2} and M^{2} / Q^{2}
V. Braun et al., PRL 109 (2012), 242001

- Sizeable even for $t / Q^{2} \sim 0.1$
- Not currently included in global fits.
- Difficulty for probabilistic interpretation (Hankle transform)

Dispersion relation and the D-term

- At all orders in α_{S}, dispersion relations relate the real and imaginary parts of the CFF.
I. Anikin and O. Teryaev, PRD 76056007
M. Diehl and D. Ivanov, EPJC 52 (2007) 919-932

Dispersion relation and the D-term

- At all orders in α_{S}, dispersion relations relate the real and imaginary parts of the CFF.
I. Anikin and O. Teryaev, PRD 76056007
M. Diehl and D. Ivanov, EPJC 52 (2007) 919-932
- For instance at LO:

$$
\operatorname{Re}(\mathcal{H}(\xi, t))=\frac{1}{\pi} \int_{-1}^{1} \mathrm{~d} x \operatorname{Im}(\mathcal{H}(x, t))\left[\frac{1}{\xi-x}-\frac{1}{\xi+x}\right]+\underbrace{2 \int_{-1}^{1} \mathrm{~d} \alpha \frac{D(\alpha, t)}{1-\alpha}}_{\text {Independent of } \xi}
$$

Dispersion relation and the D-term

- At all orders in α_{S}, dispersion relations relate the real and imaginary parts of the CFF.
I. Anikin and O. Teryaev, PRD 76056007
M. Diehl and D. Ivanov, EPJC 52 (2007) 919-932
- For instance at LO:
$\underbrace{\operatorname{Re}(\mathcal{H}(\xi, t))}_{\text {Extracted from data }}=\frac{1}{\pi} \int_{-1}^{1} \mathrm{~d} x \underbrace{\operatorname{Im}(\mathcal{H}(x, t))}_{\text {Extracted from data }}\left[\frac{1}{\xi-x}-\frac{1}{\xi+x}\right]+2 \int_{-1}^{1} \mathrm{~d} \alpha \frac{D(\alpha, t)}{1-\alpha}$
- $D(\alpha, t)$ is related to the EMT (pressure and shear forces)
M.V. Polyakov PLB 555, 57-62 (2003)

Dispersion relation and the D-term

- At all orders in α_{S}, dispersion relations relate the real and imaginary parts of the CFF.
I. Anikin and O. Teryaev, PRD 76056007
M. Diehl and D. Ivanov, EPJC 52 (2007) 919-932
- For instance at LO:

$$
\underbrace{\operatorname{Re}(\mathcal{H}(\xi, t))}=\frac{1}{\pi} \int_{-1}^{1} \mathrm{~d} x \underbrace{\operatorname{Im}(\mathcal{H}(x, t))}\left[\frac{1}{\xi-x}-\frac{1}{\xi+x}\right]+2 \int_{-1}^{1} \mathrm{~d} \alpha \frac{D(\alpha, t)}{1-\alpha}
$$

Extracted from data
Extracted from data

- $D(\alpha, t)$ is related to the EMT (pressure and shear forces)
M.V. Polyakov PLB 555, 57-62 (2003)

figure from H. Dutrieux et al., Eur.Phys.J.C 81 (2021) 4

The DVCS deconvolution problem I
From CFF to GPDs

The DVCS deconvolution problem I

 From CFF to GPDs

- It has been known for a long time that this is not the case at LO Due to dispersion relations, any GPD vanishing on $x= \pm \xi$ would not contribute to DVCS at LO (neglecting D-term contributions).

The DVCS deconvolution problem I

 From CFF to GPDs

- It has been known for a long time that this is not the case at LO Due to dispersion relations, any GPD vanishing on $x= \pm \xi$ would not contribute to DVCS at LO (neglecting D-term contributions).
- Are QCD corrections improving the situation?

Shadow GPDs

CFF Definition

$$
\underbrace{\mathcal{H}\left(\xi, t, Q^{2}\right)}_{\text {Observable }}=\int_{-1}^{1} \frac{\mathrm{~d} x}{\xi} \underbrace{T\left(\frac{x}{\xi}, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right)\right)}_{\text {Perturbative DVCS kernel }} H\left(x, \xi, t, \mu^{2}\right)
$$

Shadow GPDs

CFF Definition

$$
\underbrace{\mathcal{H}\left(\xi, t, Q^{2}\right)}_{\text {Observable }}=\int_{-1}^{1} \frac{\mathrm{~d} x}{\xi} \underbrace{T\left(\frac{x}{\xi}, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right)\right)}_{\text {Perturbative DVCS kernel }} H\left(x, \xi, t, \mu^{2}\right)
$$

Shadow GPD definition

We define shadow GPD $H^{(n)}$ of order n such that when C is expanded in powers of α_{s} up to n one has:

$$
\begin{aligned}
& 0=\int_{-1}^{1} \frac{\mathrm{~d} x}{\xi} C^{(n)}\left(\frac{x}{\xi}, \frac{Q^{2}}{\mu_{0}^{2}}, \alpha_{s}\left(\mu_{0}^{2}\right)\right) H^{(n)}\left(x, \xi, t, \mu_{0}^{2}\right) \quad \text { invisible in DVCS } \\
& 0=H^{(n)}(x, 0,0) \quad \text { invisible in DIS }
\end{aligned}
$$

A part of the GPD functional space is invisible to DVCS and DIS combined

The DVCS deconvolution problem II

The DVCS deconvolution problem II

GPDs

The DVCS deconvolution problem II

Sullivan processes

- Tested at JLab 6 Huber et al.,PRC78, 045203
- Planned for JLab 12

Aguilar et al., EPJA 55 10, 190

- Envisioned at EIC and EicC see EIC Yellow Report and EicC white paper

- Not done at JLab 6
- Planned for JLab 12

Aguilar et al., EPJA 55 10, 190

- Envisioned at EIC and EicC see EIC Yellow Report and EicC white paper

DVCS on virtual Pion Target

- Question already raised in 2008 for JLab 12. Amrath et al., EPJC 58, 179-192
- Would such processes be measurable at the future EIC and EicC? Answering the question of measurability of DVCS requires:
- A pion GPD model
- An evolution code
- A phenomenological code able to compute amplitudes from GPDs
- An event generator simulating how many events could be detected

Sullivan DVCS at the EIC

- Sullivan DVCS seems measurable at the EIC
- Our model predicts a sign flip of the Beam Spin Asymmetry due to gluons

Timelike Compton Scattering

- Amplitude related to the DVCS one ($Q^{2} \rightarrow-Q^{2}, \ldots$)
\rightarrow theoretical development for DVCS can be extended to TCS
E. Berger et al., EPJC 23 (2002) 675
- Excellent test of GPD universality but not the best option to solve the deconvolution problem

Timelike Compton Scattering

- Amplitude related to the DVCS one ($Q^{2} \rightarrow-Q^{2}, \ldots$)
\rightarrow theoretical development for DVCS can be extended to TCS
E. Berger et al., EPJC 23 (2002) 675
- Excellent test of GPD universality but not the best option to solve the deconvolution problem
- Interferes with the Bethe-Heitler (BH) process

Timelike Compton Scattering

- Amplitude related to the DVCS one ($Q^{2} \rightarrow-Q^{2}, \ldots$)
\rightarrow theoretical development for DVCS can be extended to TCS
E. Berger et al., EPJC 23 (2002) 675
- Excellent test of GPD universality but not the best option to solve the deconvolution problem
- Interferes with the Bethe-Heitler (BH) process
- Same type of final states as exclusive quarkonium production

TCS: Recent results

O. Grocholski et al., EPJC 80, (2020) 61

- DVCS Data-driven prediction for TCS at LO and NLO
- First experimental measurement at JLab through forward-backward asymmetry (interference term)
P. Chatagnon et al.,arXiv:2108.11746
- Measurable at the LHC in UPC ?

Deep Virtual Meson Production

- Factorization proven for γ_{L}^{*}
J. Collins et al., PRD 56 (1997) 2982-3006
- Same GPDs than previously
- Depends on the meson DA
- Formalism available at NLO
D. Müller et al., Nucl.Phys.B 884 (2014) 438-546

Deep Virtual Meson Production

- Factorization proven for γ_{L}^{*}
J. Collins et al., PRD 56 (1997) 2982-3006
- Same GPDs than previously
- Depends on the meson DA
- Formalism available at NLO
D. Müller et al., Nucl.Phys.B 884 (2014) 438-546
- Mesons can act as filters:
- Select singlet $\left(V_{L}\right)$, non-singlet (pseudo-scalar mesons) contributions or chiral-odd distributions (V_{T})
- Help flavour separation
- Leading-order access to gluon GPDs

Deep Virtual Meson Production

- Factorization proven for γ_{L}^{*}
J. Collins et al., PRD 56 (1997) 2982-3006
- Same GPDs than previously
- Depends on the meson DA
- Formalism available at NLO
D. Müller et al., Nucl.Phys.B 884 (2014) 438-546
- Mesons can act as filters:
- Select singlet (V_{L}), non-singlet (pseudo-scalar mesons) contributions or chiral-odd distributions (V_{T})
- Help flavour separation
- Leading-order access to gluon GPDs
- Factorisation proven \neq factorisation visible at achievable Q^{2}
- Leading-twist dominance at a given Q^{2} is process-dependent \rightarrow for DVMP it can change between mesons.
- At JLab kinematics, higher-twist contributions are very strong \rightarrow hide factorisation of σ_{L}

Status of DVMP

- π^{0} electroproduction
- $\sigma_{T}>\sigma_{L}$ at JLab 6 and likely at JLab 12 kinematics $\left(Q^{2}=8.3 \mathrm{GeV}^{2}\right)$
M. Dlamini et al., Phys.Rev.Lett. 127 (2021) 15, 152301
- No extraction of σ_{L} at JLab 12 yet
- Model-dependent treatment of σ_{T} using higher-twist contributions
S. V. Goloskokov and P. Kroll, EPJC 65, 137 (2010)
G. Goldstein et al., PRD 91 (2015) 11, 114013

Status of DVMP

- π^{0} electroproduction
- $\sigma_{T}>\sigma_{L}$ at JLab 6 and likely at JLab 12 kinematics $\left(Q^{2}=8.3 \mathrm{GeV}^{2}\right)$ M. Dlamini et al., Phys.Rev.Lett. 127 (2021) 15, 152301
- No extraction of σ_{L} at JLab 12 yet
- Model-dependent treatment of σ_{T} using higher-twist contributions
S. V. Goloskokov and P. Kroll, EPJC 65, 137 (2010)
G. Goldstein et al., PRD 91 (2015) 11, 114013
- ρ^{0} electroproduction
- $\sigma_{T}=\sigma_{L}$ for $Q^{2} \simeq 1.5 \mathrm{GeV}^{2}$ and $\frac{\sigma_{L}}{\sigma_{T}}$ increases with Q^{2}

$$
\text { see e.g. L. Favart, EPJA } 52 \text { (2016) 6, } 158
$$

- $\sigma_{T} \neq 0$ though $\rho_{0 ; T}$ production vanishes at leading twist \rightarrow No LT access to chiral-odd GPDs.
M. Diehl et al., PRD 59 (1999) 034023
- Sizeable higher-twist effects need to be understood
I. Anikin et al., PRD 84 (2011) 054004

Status of DVMP

- π^{0} electroproduction
- $\sigma_{T}>\sigma_{L}$ at JLab 6 and likely at JLab 12 kinematics $\left(Q^{2}=8.3 \mathrm{GeV}^{2}\right)$ M. Dlamini et al., Phys.Rev.Lett. 127 (2021) 15, 152301
- No extraction of σ_{L} at JLab 12 yet
- Model-dependent treatment of σ_{T} using higher-twist contributions
S. V. Goloskokov and P. Kroll, EPJC 65, 137 (2010)
G. Goldstein et al., PRD 91 (2015) 11, 114013
- ρ^{0} electroproduction
- $\sigma_{T}=\sigma_{L}$ for $Q^{2} \simeq 1.5 \mathrm{GeV}^{2}$ and $\frac{\sigma_{L}}{\sigma_{T}}$ increases with Q^{2}

$$
\text { see e.g. L. Favart, EPJA } 52 \text { (2016) 6, } 158
$$

- $\sigma_{T} \neq 0$ though $\rho_{0 ; T}$ production vanishes at leading twist \rightarrow No LT access to chiral-odd GPDs.
M. Diehl et al., PRD 59 (1999) 034023
- Sizeable higher-twist effects need to be understood
I. Anikin et al., PRD 84 (2011) 054004

DVMP is as interesting as challenging Additional data would be more than welcome

PARTONS and Gepard

PARTONS

partons.cea.fr

Gepard
calculon.phy.hr/gpd/server/index.html

K. Kumericki, EPJ Web Conf. 112 (2016) 01012

- Differences : models, evolution, ...

Physics impact

These integrated softwares are the mandatory path toward reliable multichannel analyses.

First NLO DVCS-DVMP multichannel analysis

M. Cuic et al., JHEP 12 (2023) 192

First NLO-multichannel analysis regarding in the GPDs community

Conclusion

Summary

- Introduction to GPDs and their place in hadron structure studies
- Evolution of GPD
- Connection to experimental processes

Conclusion

- GPD field is as complicated as interesting
- Many theoretical and phenomenological works remain required
- Forthcoming facilities will likely shed new light on them
- Progresses in ab-initio computations (continuum and lattice) expected to be significant in the forthcoming years

Thank you for your attention! Some final questions?

