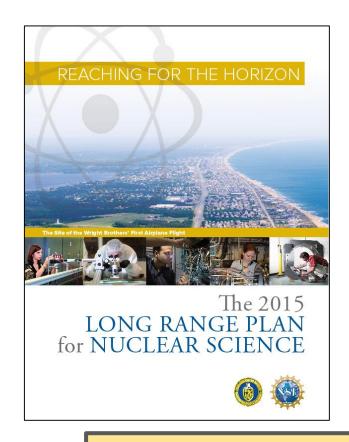


Accelerator R&D in the DOE Office of Nuclear Physics

Manouchehr Farkhondeh DOE Office of Nuclear Physics

EIC User Group Meeting 2018
The Catholic University of America
July 30, 2018



DOE Office of Science Accelerator R&D Categories

- Short Term Accelerator R&D- Accelerator R&D with the potential for improved performance and/or new capabilities to existing NP scientific user facilities that will lead to new capabilities or improved operations. This is supported by NP and other program offices.
- **Mid-Term Accelerator R&D**: Accelerator R&D with the potential for the development of the future generation of NP accelerators not under construction. This is supported by NP and other program offices.
- Long-Term or generic Accelerator R&D: This is directly supported by the Office of High Energy Physics (HEP) although NP work often relevant.
- ➤ Total annual direct NP investment in EIC-related accelerator R&D through competitive funding opportunity announcement (FOA) and National Laboratory Accelerator R&D is on the order of \$13.5 M per year and increasing.

2015 NSAC LRP Report

RECOMMENDATION III (Page 4)

Gluons, the carriers of the strong force, bind

We recommend a high-energy high-luminosity
polarized EIC as the highest priority for new facility
construction following the
completion of FRIB.

INITIATIVES: (Page 5)

B: Initiative for Detector and Accelerator Research and Development

.....

We recommend vigorous detector and accelerator R&D in support of the neutrinoless double beta decay program **and the EIC.**

The **key EIC machine parameters** identified in the LRP were:

- Polarized (~70%) electrons, protons, and light nuclei,
- Ion beams from deuterons to the heaviest stable nuclei,
- Variable center of mass energies ~20-100 GeV, upgradable to ~140 GeV,
- High collision luminosity ~10³³-10³⁴ cm⁻²sec⁻¹, and
- Possibly have more than one interaction region.

Planning towards an EIC

2015 LRP Recommendation III: "We recommend a high-energy high-luminosity polarized EIC as the highest priority for new facility construction following the completion of FRIB."

In view of this recommendation on the realization of an EIC, NP developed a near-term plan in discussion with EIC stakeholders:

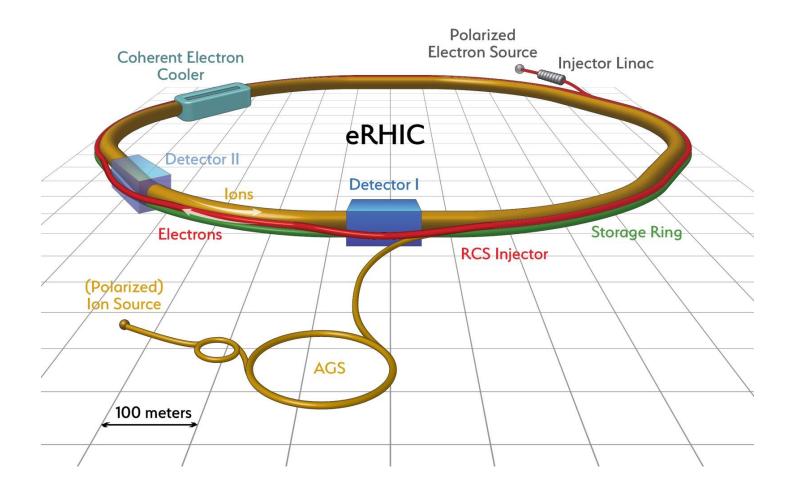
- ➤ A science assessment of a US-based EIC by National Academy of Sciences
- > A major NP Community EIC Accelerator R&D Panel Review
- ➤ A mechanism for increased accelerator R&D funding for FY17 and beyond

Planning Towards an EIC

- National Academy of Sciences (NAS) Study: Initiated an 18 month NAS study entitled: "US-BASED ELECTRON ION COLLIDER SCIENCE ASSESSMENT" Started in July 2016. (Report completed)
- **FY16 FOA:** Published competitive FOA ("Accelerator R&D for Next Generation NP Facilities") focused on EIC-related R&D. NP has been funding competitive accelerator R&D since 2010 at ~\$2M/year.
- NP Community Panel Review: Conducted NP community EIC R&D panel review charged with
 identifying high priority R&D aimed at technical risk reduction. Dr. Kevin Jones of SNS chaired this
 international panel. First face-to-face meeting was held November 29-December 2, 2016. Panel
 Report published in February 2017 (https://science.energy.gov/np/community-resources/reports/)
- **FY17:** EIC-related Accelerator R&D plans received from Labs and universities and high priority R&D in the context of Jones report is supported.
- Bi-Annual FOA starting FY18: Published bi-annual FOA for competitive accelerator R&D based on R&D priorities established in the EIC panel report. (Awards selected for FY 18)
 - ➤ **Funding level**: ~\$8.8 M per year for FY18 and FY19.
 - Funding sources: Combination of NP competitive accelerator R&D funds augmented with RHIC and CEBAF Accelerator Operations budget funding.

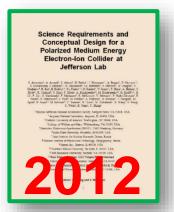
EIC Concepts

Current EIC concepts have emerged from national labs.

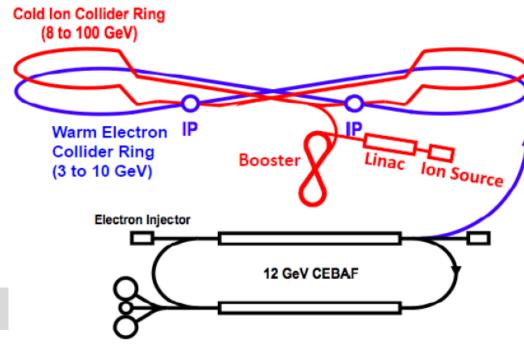

Strong collaborations at the labs and with universities to advance different concepts and common R&D relevant to all concepts:

- BNL: eRHIC based on a Ring-Ring concept
- TNJAF: JLEIC based on a high repetition rate figure-8 Ring-Ring concept

Note: At the time of the Jones panel review, BNL developing two different eRHIC concepts R-R and L-R. In April 2017, after the Jones report was published, BNL announced the R-R as the primary concept for eRHIC.


eRHIC Ring-Ring Design

Storage ring for electron inside the RHIC tunnel


JLEIC Figure 8

MEIC Design Summary January 20, 2015

arXiv:1209.0757 arXiv:1504.07961

CEBAF is a full energy injector.

Jones Panel Priority Table:

Report of the Community Review of EIC Accelerator R&D for the Office of Nuclear Physics

February 13, 2017

2017

The **key EIC machine parameters** identified in the LRP were:

- Polarized (~70%) electrons, protons, and light nuclei,
- Ion beams from deuterons to the heaviest stable nuclei,
- Variable center of mass energies ~20-100 GeV, upgradable to ~140 GeV,
- High collision luminosity ~10³³-10³⁴ cm⁻²sec⁻¹, and
- Possibly have more than one interaction region.

Jones Report R&D Priorities

Priority: "High", "Medium", or "Low", Sub-Priority: "A", "B", "C" or "None"

Proponent: "PANEL", "BNL" or "JLAB"

Design Concept: "RR", "LR" or "JLEIC"

- Sub-Priority-A: The R&D elements that the <u>panel judged</u> to be applicable to <u>all</u> concepts presented are identified by "ALL" in the concept/proponent identifier column and are assigned sub-priority A. These are considered the most important to be addressed to reduce overall design risk.
- Sub-Priority-B: The R&D elements that the <u>panel judged</u> to be applicable to <u>individual</u> <u>concepts</u> presented are identified by the appropriate concept identifier in the concept/proponent identifier column (e.g., LR, RR or JLEIC) and are assigned sub-priority B.
 These are considered to be second in importance to reduce overall design risk, but important to reduce the risk associated with a specific concept.
- Sub-Priority-C: The R&D elements <u>self-identified by the proponents</u> are tabulated in lines 23-75 with the priority as deemed by the panel. Specific self-identified high priority R&D elements that <u>have substantial correlation with the high priority</u> global and concept-specific sub-priority A and B elements identified by the panel are denoted as sub-priority C to permit ready cross-reference when evaluating future R&D proposals.

Technical Challenges for EIC

<u>EIC will be one of the most complex collider accelerators ever to be built.</u> It will push the envelope in many fronts including high degrees of beam polarizations, high luminosity, beam cooling, beam dynamics, crab cavities for both beams, and an interaction region with complex magnets.

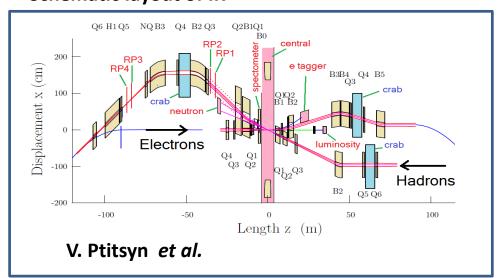
Required Accelerator R&D Advances for EIC (list from the Jones panel report)

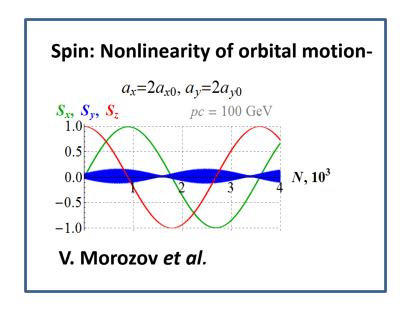
- Hadron cooling techniques
- Polarized electron sources
- Ring magnet demonstrations
- Interaction region magnet design and prototyping
- Machine-detector interfaces
- Superconducting RF technology
- Large scale cryogenics technology
- High current ERL linacs
- Crab cavity design, fabrication and testing (with beam)
- Beam and spin dynamics and benchmarking of simulation tools
- Electron cloud mitigation techniques

State of the Art Accelerator Technology for EIC

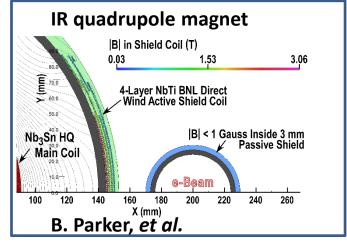
- **Beam Cooling:** Beam cooling is one of the highest priority R&D for EIC. The challenge is to achieve the high collision luminosity of order $^{\sim}10^{33}$ - 10^{34} cm⁻²sec⁻¹.
 - High current multi-pass energy Recovery Linac (ERL)
 - High current unpolarized electron injectors for ERL

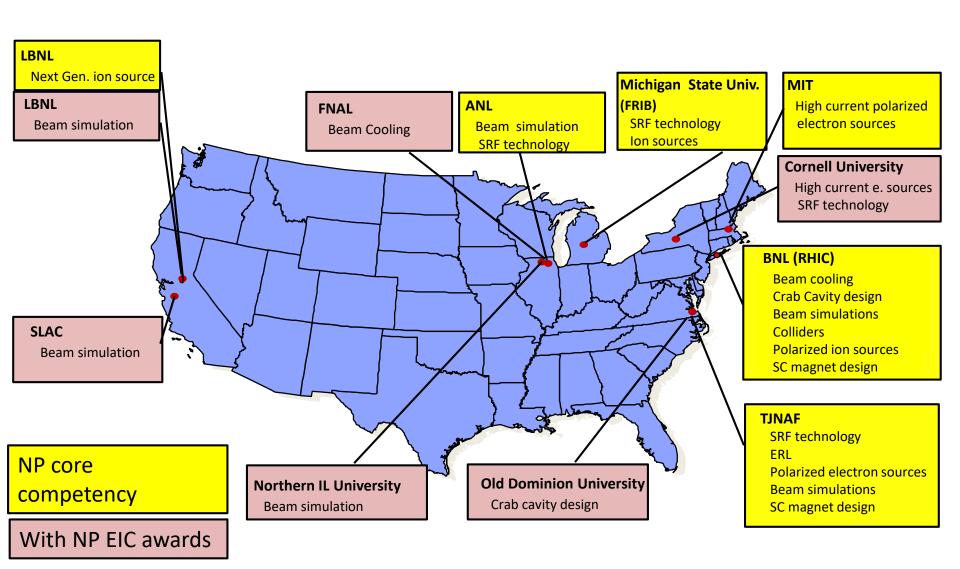
> Interaction Region


- Magnets: Challenging magnet designs to meet required high fields and field free regions for passage of primary beams.
- Crab cavities: Achieve maximized collision rates between bunches. No operational experience yet exists for crab cavities in hadron beams.
- Storage ring Magnets: Challenging high field storage ring magnets are needed.
- > Polarized electron Sources: High bunch charges for the ring-ring concept
- ➤ **Simulation Codes:** Benchmarking of realist EIC simulation tools against available data needs to be aggressively pursued.


Core competencies in these areas exist at NP and SC Labs and universities. Collaborations have formed to address these technical challenges.


State of the Art Accelerator Technology for EIC


Schematic layout of IR



Core Competencies for EIC at NP Labs and Universities

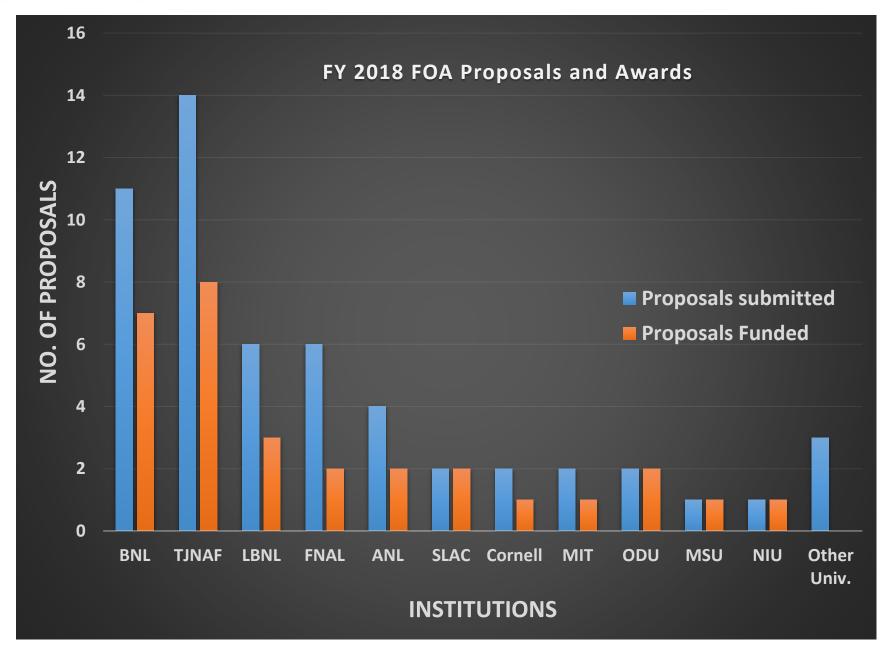
FY2017 R&D Plan Awards

Page 1			FY 2017 EIC R&D Plan Awards	
Proposal ID	Institution	R&D Area	Proposal Title	Principal Investigator
232006	Cornell		Next generation robust pol. photocathodes for EIC	Ivan Bazarov
FY17 Add Collab. BNL	MIT/subc	Polarized e Source	High Current, High Charge Polarized Electron Sources	Bob Redwine /Evgeni Sentalovich
FY17 Additional	BNL		complete procurement of components for inverted gun	John Skaritka
FY17 Base	BNL		Gatling gun, laser system and design of new inverted gun	John Skaritka
FY17 Additional BNL	BNL		Development of a Polarized 3He Ion Source for RHIC	Anatoly Zelenski
FY17 Add Collab. BNL	MIT/subc	Polarized 3He Source	Development of a Polarized 3He Ion Source for RHIC	Richard Milner
FY17 Base	TJNAF		Magnetized Electron Source	Riad Suleiman
FY17 R&D	TJNAF		Electron Cooling Simulation Development	Yves Roblin
FY17 Base	BNL		Coherent Electron Cooling Po P experiment	Vladimir Litvinenko
FY17 Base	TJNAF	Beam Cooling	Electron Cooler Design	Steve Benson
FY17 Base	TJNAF		Bunched Beam Electron Cooling Experiment	Yuhong Zhang
232015	NIU		Studies of Conventional and ERL-Based Re-circulator Electron Cooling for an Electron Ion Collider	Bela Erdelyi
FY17 Add Collab. BNL	FNAL		Study of Electron Spin Polarization in the EIC	Eliana Gianfelice-Wendt
FY17 Additional BNL	BNL	Spin Dynamics	Study of Electron Spin Polarization in the EIC	Mike Blaskiewicz
FY17 Base	TJNAF		Spin Tracking in Ion and Electron Rings	Vasiliy Morozov
FY17 R&D	TJNAF		IR FFQ Prototype Definition	Tim Michalski
FY17 Additional BNL	BNL		Design and Prototyping of SC EIC – IR Magnets	Peter Wanderer
FY17 Base	TJNAF	Magnet R&D	Interaction Region (IR) Magnet Design Verification	Tim Michalski
FY17 R&D	TAMU/Subc		Complete and Test a Full Scale Suitable Superferric Magnet	Peter McIntyre/Tim Michalski

FY2017 R&D Plan Awards

Page 2			FY 2017 EIC R&D Plan Awards	
Proposal ID	Institution	R&D Area	Proposal Title	Prinicipal Investigator
113	ANL		Beam Simulation and Benchmarking	Brahim Mustapha
FY17 Base	BNL	Danie Dimania	Beam-Beam Effects, Collective Effects Study, Dynamic Aperture	Mike Blaskiewicz
FY17 Base	BNL	Beam Dynamics	eRHIC Electron Storage Ring Concept Development	Christoph Montag
FY17 Base	TJNAF		Beam-Beam Dynamics with Gear Changing	Yves Roblin
FY17 R&D	TJNAF	SRF R&D	Fast Feedback System and Kicker Design	Bob Rimmer
FY17 R&D	TJNAF		Test of CEBAF Electron Injection Mode	Jiquan Guo
111	ANL		ANL Plan for EIC R&D: HOM damping	Michael Kelly
FY17 Base	BNL		Design of state of the art RF systems for eRHIC	Kevin Smith
FY17 Base	TJNAF		Development of SRF Systems for an EIC	Bob Rimmer

- Areas of R&D: Mostly included highest rated R&D priority areas identified in the Jones panel report. Also included few areas TJNAF and BNL were doing R&D prior to the Community report.
- A two day Principal Investigator meeting is organized for November 13-14, 2018 for all PIs listed above to present their work to NP and other PIs to promote communication and collaboration amongst national labs and universities.


Proposals submitted to FY 2018 FOA

Institutions	Number of Proposals	Budget Request Y-1 (\$k)	Budget Request y1+y2 (\$k)
National Labs	43	17,526	34,481
Universities	12	3,966	7,931
Industry	1	107	213
Totals	56	21,599	42,625

Collaboration Proposals

Type of Proposals	No. of Proposals	Total Individual proposals
Collaborative	16	43
Non-collaborative	13	13
Totals	29	56

List of FY2018 FOA Awards

Proposal ID	Institution	Collab. num.	Proposal Title	PI
235278	FNAL		Ring-based high-energy electron cooler	Nagaitsev, Sergei
235263 235254 235377 235315	BNL LBNL MSU TJNAF	Lead	Development and test of simulation tools for EIC beam Collaboration Collaboration Collaboration	Luo, Yun Qiang, Ji Hao, Yue Roblin, Yves
235309	TJNAF	Lead	Theoretical and experimental study of spin transparence Figure-8 Ring (Collaboration)	Morozov, Vasiliy Huang, Haixin
235325	TJNAF	Lead	Validation of EIC IR Magnet Parameters and Requirements Using Existing Magnet Results	Michalski, Timothy
235265 235344	LBNL		Collaboration Collaboration	Sabbi, GianLuca Sullivan, Michael
235374 235261 235311	ODU BNL TJNAF	Lead	Crab Cavity Operation in a Hadron Ring Collaboration Collaboration	Delayen, Jean Wu, Qiong Krafft, Geoffrey
235335 235339 235343 235352	BNL ANL SLAC TJNAF	Lead	Strong hadron cooling with micro-bunched electron beat Collaboration Collaboration Collaboration	

Most awards going to collaborative proposals

List of FY2018 FOA Awards

Page 2

Proposal ID	Institution	Collab. num.	Proposal Title	PI
235372	Cornell		High current electron sources for strong hadron cooling and polarized sources for EIC	Bazarov, Ivan
235236 235273 235324	BNL LBNL TJNAF	Lead	High Gradient Actively Shielded Quadrupole Collaboration Collaboration	Wanderer, Peter Sabbi, GianLuca Michalski, Timothy
235258 235336	BNL MIT	Lead	Development of an absolute polarimeter and spin-rotat Collaboration	
235251 235345	ANL TJNAF	Lead	High Bandwidth Beam Feedback Systems for a High L Collaboration	Conway, Zachary Rimmer, Bob
235303 235373 235277 235259	TJNAF ODU FNAL BNL	Lead	Development of innovative high-energy magnetized electron cooling for an EIC Collaboration Collaboration Collaboration	Benson, Stephen Krafft, Geoff Piot, Philippe Blaskiewicz, Michae
235371	NIU		Studies of Conventional and ERL-Based Re-circulator Electron Cooling for an Electron Ion Collider	Erdelyi, Bela
		Total	8802	

> Funding level: FY 18 Enacted: \$8.8M

Summary Remarks

- With the 2015 NSAC LRP recommendation for an EIC, NP has developed a near-term plan for moving forward with an EIC:
 - A NAS study of merits of US-based EIC
 - An NP community panel review for setting priorities for EIC accelerator R&D
 - Increased accelerator R&D funding
- The realization of an EIC will require development of many cutting-edge accelerator technologies, securing U.S. leadership in accelerator R&D in the long-term.
- ➤ NP has a great deal of accelerator science expertise within its portfolio, with three operating accelerator Scientific User Facilities, and a fourth under construction (FRIB).
- ➤ NP will continue to support and nurture the core competencies needed to implement an EIC and will continue EIC R&D.

END