
TCS Trigger Concept

As presented in the PAC48 proposal, PAC presentation, answers to the committee questions, discussions with Bogdan, Alexandre...

V. Tadevosyan September 2020

Proposed TCS setup

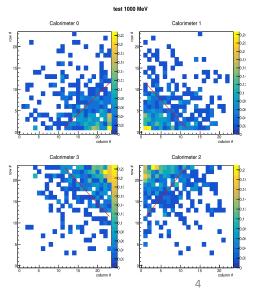
$\gamma + p \rightarrow \gamma^* (e^+ + e^-) + p'$

- Detect e⁺, e⁻, recoil p' in coincidence
- Detectors arranged in 4 quarters, oriented to target
- Triple-GEMs for e⁺, e⁻, p tracking
- Hodoscopes for recoil proton detection/PID
- *PbWO*⁴ calorimeters for *e*⁺, *e*⁻ detection/PID

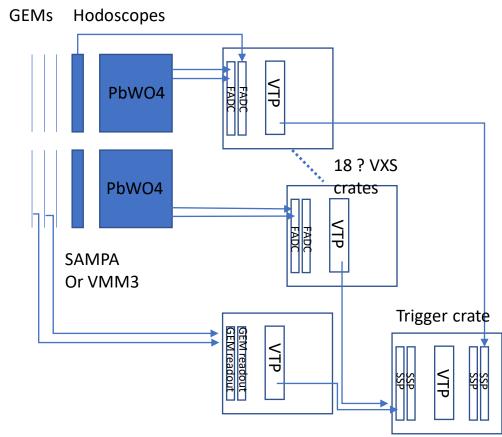
Trigger level 1

- Request 2 strongest clusters in the calorimeters, in the opposite quadrants, with energy > 1 GeV each, with combined energy > 5 GeV
- 2. Request energy depositions in 2 hodoscope blocks, correlated in time and location with the calorimeter clusters.

Trigger level 2


- 1. Request 2 coincident clusters in the calorimeters (e+, e-)
- 2. Request a hit in scintillators (recoil proton) correlated in time with the calorimeter clusters, and corresponding 2 hits out of 3 in GEM-s.

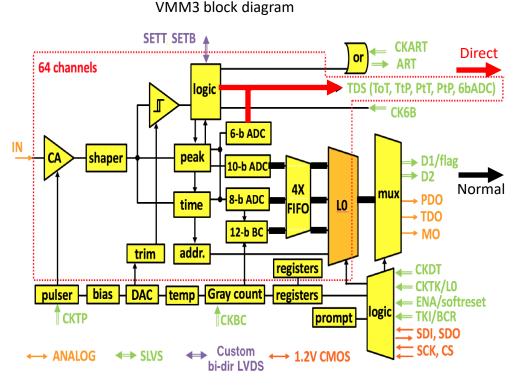
Trigger details (not presented to PAC)


- Each of four quadrants will provide in pipeline (2-3 micro seconds delay) parameters per cluster
 - Location, time, and energy of two strongest clusters in the calorimeter,
 - Energy deposition in the scintillator block correlated in time and location
- VTP (VXS trigger processor) will use the combined energy (> 5 GeV) for the trigger level 1
 - Search for proton signals in the scintillator hodoscope correlated in time to e+/e-
 - Initiate readout of GEM DAQ
- Preliminary proton tracking using GEM information in VMM3 (modern GEM chamber chip, an implementation under development for the SOLID preRD)

Calorimeter cluster trigger

- Compute all 4x4 sums, one sum above threshold
- Request "seed" energy > 1 GeV, 2 quadrant combined energy > 5 GeV
- ✓ Exclude 1/8 "hot" blocks close to beam pipe → ~23% reduction of useful events
- ✓ ~3 MHZ integral hit rate in each quadrant, reasonable for trigger formation
- ✓ 38 kHZ background trigger rate \rightarrow 10 20 ns time window, reasonable for trigger formation
- ✓ At least 90% efficiency for TCS events (estimate with no background)

Scheme of DAQ


4 x 23x23 crystals and scintillators = 2116 x 2 = 4,232 fADC

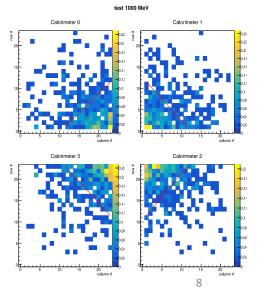
4 x (5 layers of GEM chambers 50 cm x 50 cm) = 16 x 2 x 500/0.4 = 50,000 MVV3

Inclusion of GEM in trigger will be developed

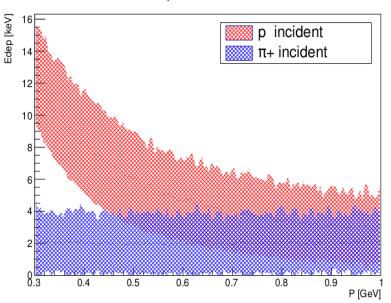
VTP : VXS Trigger Processor SSP : Sub-System Processor

VMM3 chip

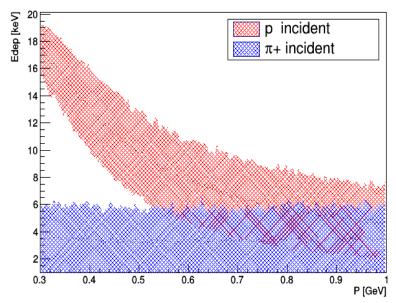
- ASIC for ATLAS New Small Wheel
- Radiation hard similar to APV25 : > 100 Mrad
- 64 channels
- Low noise over wide range of input capacitance (<1 pF to ~1 nF)
- Shaping times : 25 ns, 50 ns, 100 ns, 200 ns
- Pulse amplitude proportional to charge at input
- Gains : 0.5, 1, 3, 4.5, 6, 9, 12, 16 mV/fC
- 6 bit ADC (25 ns conversion) and 10 bit ADC (250 ns conversion), 8 bits TDC (1 ns resolution), 12 bits
 Beam Crossing time stamp
- 4 MHz of rate per channel thanks to multilevel FIFO
- Continuous or triggered readout on normal data path
- Latency up to 16 μ s in triggered mode
- Fast direct outputs (64 channels) for ATLAS trigger (6b ADC, ToT)
- Normal data link up to 320 Mb/s


Backup slides

Trigger details


- Each of four quadrants will provide in pipeline (2-3 micro seconds delay) parameters per cluster
 - Location, time, and energy of two strongest clusters in the calorimeter,
 - Energy deposition in the scintillator block correlated in time and location
- VTP (VXS trigger processor) will use the combined energy (> 5 GeV) for the trigger level 1
 - Search for proton signals in the scintillator hodoscope correlated in time to e+/e-
 - Initiate readout of GEM DAQ
- Preliminary proton tracking using GEM information in VMM3 (modern GEM chamber chip, an implementation under development for the SOLID preRD)

Calorimeter cluster trigger


- Compute all 4x4 sums, one sum above threshold
- Request "seed" energy > 1 GeV, 2 quadrant combined energy > 5 GeV
- ✓ Exclude 1/8 "hot" blocks close to beam pipe \rightarrow ~23% reduction of useful events (E_{QUAD}^+ >1GeV , E_{QUAD}^- >1GeV , E_{QUAD}^+ + E_{QUAD}^- >5GeV)
- ✓ ~3 MHZ integral hit rate in each quadrant, reasonable for trigger formation (E_{MODULE}>1GeV, 1/8 "hot" blocks excluded)
- ✓ 38 kHZ background trigger rate, reasonable for trigger formation $(E_{SEED}>1GeV, E_{QUAD}^++E_{QUAD}^->5GeV$, rectangular quadrants)
- ✓ At least 90% efficiency for TCS events (E_{QUAD}^+ >1GeV , E_{QUAD}^- >1GeV , E_{QUAD}^- >5GeV , rectangular quadrants, estimate with no background)

Proton PID with GEMs

Combined Edep from 3 TCS GEM trackers

Combined Edep from 5 TCS GEM trackers