Physics case for TCS experiment at NPS using transversally polarized target and circularly polarized photon beam

Projection of TCS observables

<u>Reference bin</u>: .17<-t<.25 GeV², .13< ξ <.16, 4<Q'²<5.5 GeV², 7.5<Ey<10.5 GeV some acceptance cuts. Phase space cuts on BH peaks.

 \Rightarrow I refer to past presentations this year at this meeting for details about method and binning ² (some slides in backup)

Fits of CFF

• Kinematic of reference bin: -t=.2 GeV², ξ =0.15, 16 bins in ϕ

TCS: Q'²=4.5 GeV², θ=90° / DVCS: E=11 GeV, Q²=2.5 GeV

• Expected stat errors x-sec: 2% to 5% in each 16 bins in ϕ before polarization rescaling \Rightarrow for fit here, assume total errors 5% on σ and 7% on $\Delta\sigma$

• Fit with 7 independent CFF on pseudo-data, VGG model, LO/LT DVCS and TCS, using MINOS with χ^2 , systematic studies with smearing on starting point to account for correlations, limit of extracted coeff= [-5, 5]. Extracted: "fit"*generated CFF coefficient.

Table legend: - approved / running	- conditionnaly approved / future - proposed			
set of observables	DVCS	TCS	DVCS+TCS	independent obs DVCS/TCS/both
1) σ +Δσ _{LU(☉U)}	Hall A, B, C	Hall A, B, <mark>C</mark>	A, B, <mark>C</mark>	2/2/2
2) $\sigma + \Delta \sigma_{LU(\odot U)} + \Delta \sigma_{UL} + \Delta \sigma_{LL(\odot Z)}$	Hall B	no	no	4/4/4
3) $\sigma + \Delta \sigma_{LU(OU)} + \Delta \sigma_{UT}$	cond. Hall B	Hall C	no	4/4/4
4) = 2) + 3) $\sigma + \Delta \sigma_{LU(\odot U)} + \Delta \sigma_{UL} + \Delta \sigma_{LL(\odot L)}, \Delta \sigma_{UT}$	cond. Hall B	no	no	6/6/6
5) = all spin $\sigma + \Delta \sigma_{LU(\odot U)}$ + $\Delta \sigma_{UL} + \Delta \sigma_{LL(\odot L)} + \Delta \sigma_{UT} + \Delta \sigma_{LT(\odot T)}$	no	no	no	8/8/8
6) DVCS: $\sigma + \Delta \sigma_{LU} + \Delta \sigma^{\pm}$ TCS: $\sigma + \Delta \sigma_{\odot U} + \Delta \sigma_{LU}$	no	Hall D (high luminosity)	-	3/3

1. σ+BSA, 2. σ+BSA+long, 3. σ+BSA+trans., 4. σ+BSA+long.+trans., 5. σ+all spin, 6. σ+beam+Lbeam or charge

1. σ+BSA, 2. σ+BSA+long, 3. σ+BSA+trans., 4. σ+BSA+long.+trans., 5. σ+all spin, 6. σ+beam+Lbeam or charge

Summary of the physics case

• TCS transverse target spin asymmetries are sensitive to Im part of amplitudes as well as beam spin asymmetry. Cross section sensitive to both Im and Re. Expected constrain on Im(CFFs).

• Azimuthal dependence of polarized cross sections $\propto \sin(\phi \pm \phi_s)$ with ϕ = lepton pair plane vs reaction plane (y, P, y*) and ϕ_s = target spin vs reaction plane.

• Definition, at fix ϕ_s : $\Delta \sigma(\phi) = \sigma^{\uparrow}(\phi, \phi_s) - \sigma^{\downarrow}(\phi, \phi_s)$

• 2 independent $\Delta \sigma_{UT}$ by fitting 4 sets of 2 orthogonal asymmetries: 0°/90°, 22.5°/112.5°, 45°/135°, 67.5°/157.5°. For presented results: fit 0°/90°.

• In total, experiment brings 4 independent observables in TCS: σ , $\Delta \sigma_{ou}$, $\Delta \sigma_{u\tau}$ (x2).

• Fit results:

Im(H), Im(Ht), Re(H): well constrain thanks to 4 independent obs. Level of DVCS. Combination and/or comparision possible with DVCS (assuming same uncertainties on DVCS and TCS)
⇒ check of GPD universality with H,
⇒ reduction of errors ~ factor of 2 with combination

Im(E): ~30% error on extracted coeff in presented example \Rightarrow unique with this experiment

Conclusion regarding physics:

Proposed experiment will bring unique constrains on Im(E). It will allow to demonstrate GPD H universality by comparison of TCS and DVCS results. Thanks to 4 independent observables for the fits, the precision on fit results on TCS side could be ~10x better than already approved experiments. In combination with DVCS in "global" DVCS+TCS fits, uncertainties on CFF "known" from DVCS can be improved up to a factor of 2. DVCS+TCS fits with new independent constrains on Im(E) will also allow for better constrains on most CFF thanks to correlations.

BACKUP

TCS with transversally polarized proton

TCS+BH in y P \rightarrow **e+ e- P**: 6 independent variables for polarized cross sections

Choice: 3 kinematics (ξ , t, Q'²), 3 angles (ϕ_{CM} , θ_{CM} , ϕ_{S})

Transversally polarized target: θ_s =90°, eventual corrections at % level if small rotation of axis

Observables to measure: 2 orthogonal asymmetries in ϕ_s , depending on ϕ and ϕ_s

A_{ut} = single target (transverse) spin asymmetry,

 A_{oT} = double beam (circular) and target (transverse) spin asymmetry

Observables: calculated

Approach 1 (single TSA): $A_{UT} = -sin(\phi - \phi_s)$, at 2 fix orthogonal ϕ_s or ϕ values \rightarrow 2 independent observables sensitive to different combination of GPDs in the nucleon

Approach 1-bis (single TSA): iterative CFF extraction at various values of 2 orthogonal ϕ or ϕ_s

9

BH peaks in yellow, mostly out of acceptance (small θ lab for one lepton, low momentum for the other one) \rightarrow cut as a function of (E, Q'², t)

2 figs on right: θ max cut, all what is above is rejected in case φ =0±30° or φ =180°±30°

cf note: https://halldweb.jlab.org/doc-public/DocDB/ShowDocument?docid=3571

Lab frame correlation (without deflection)

Optimization with balance between error bars, TCS and size of asymmetries

Choice of binning

Proposed binning for current studies, will be updated after setup optimization and more studies

Important for GPDs and target spin asymmetries: thin ξ and t bins

Option for unpolarized cross section and beam spin asymmetry: $Q^{\prime 2} \rightarrow not$ in presented approach

Statistics for unpolarized cross section in 4x5 kinematic bins vs φ

statistics 200 to 2000 events / bin using Luminosity(CPS, 7.5->11 GeV) = 3.27 e5 pb^{-1}

*in red: bin for reference later

Remark: some bins affected by (θ, ϕ) cut have not the

Beam spin asymmetry in 4x5 kinematic

circular polarization, no dilution factor applied

 \rightarrow given errors, it is measurable and will have impact

