Physics case for TCS experiment at NPS using transversally polarized target and circularly polarized photon beam

Projection of TCS observables

Reference bin: . $17<-\mathrm{t}<.25 \mathrm{GeV}^{2}, .13<\xi<.16,4<\mathrm{Q}^{2}<5.5 \mathrm{GeV}^{2}, 7.5<\mathrm{Ey}<10.5 \mathrm{GeV}$ some acceptance cuts. Phase space cuts on BH peaks.

4 independent observables: $\sigma, \Delta \sigma_{\odot u}, \Delta \sigma_{U T}$.
cross section sensitive to Im and Re (amplitude) and asymmetries sensitive to Im(amplitude), BH cancels.

Proposed binning with 16 bins in φ allow for 2% to 5\% statistic errors $/ \varphi$ bin. Asymmetries or $\Delta \sigma$ large enough to be extracted.

Fits of CFF

- Kinematic of reference bin: -t=. $2 \mathrm{GeV}^{2}, \xi=0.15,16$ bins in φ TCS: Q ${ }^{2}=4.5 \mathrm{GeV}^{2}, \theta=90^{\circ} / \mathrm{DVCS}: \mathrm{E}=11 \mathrm{GeV}, \mathrm{Q}^{2}=2.5 \mathrm{GeV}$
- Expected stat errors x-sec: 2\% to 5\% in each 16 bins in φ before polarization rescaling \Rightarrow for fit here, assume total errors 5% on σ and 7% on $\Delta \sigma$
- Fit with 7 independent CFF on pseudo-data, VGG model, LO/LT DVCS and TCS, using MINOS with χ^{2}, systematic studies with smearing on starting point to account for correlations, limit of extracted coeff= [-5 , 5]. Extracted: "fit"*generated CFF coefficient.

set of observables	DVCS	TCS	DVCS+TCS	independent obs DVCS/TCS/both
1) $\sigma+\Delta \sigma_{L U(\odot U)}$	Hall A, B, C	Hall A, B, C	A, B, C	2/2/2
2) $\sigma+\Delta \sigma_{\mathrm{LU}(\odot \mathrm{U})}+\Delta \sigma_{\mathrm{UL}}+\Delta \sigma_{\mathrm{LL}(\odot \mathrm{z})}$	Hall B	no	no	4/4/4
3) $\sigma+\Delta \sigma_{\mathrm{LU}(\odot \mathrm{U})}+\Delta \sigma_{\mathrm{UT}}$	cond. Hall B	Hall C	no	4/4/4
$\begin{aligned} & \text { 4) }=2)+3) \\ & \sigma+\Delta \sigma_{\mathrm{LU}(\odot \mathrm{U})}+\Delta \sigma_{\mathrm{UL}}+\Delta \sigma_{\mathrm{LL}(\odot \mathrm{~L})}, \Delta \sigma_{\mathrm{UT}} \end{aligned}$	cond. Hall B	no	no	6/6/6
$\begin{aligned} & \text { 5) }=\text { all spin } \sigma+\Delta \sigma_{\mathrm{LU}(\odot \mathrm{U})} \\ & +\Delta \sigma_{\mathrm{UL}}+\Delta \sigma_{\mathrm{LL}(\odot \mathrm{~L})}+\Delta \sigma_{\mathrm{UT}}+\Delta \sigma_{\mathrm{LT}(\odot T)} \end{aligned}$	no	no	no	8/8/8
6) DVCS: $\sigma+\Delta \sigma_{\mathrm{Lu}}+\Delta \sigma^{ \pm}$ TCS: $\sigma+\Delta \sigma_{\odot \mathrm{U}}+\Delta \sigma_{\mathrm{LU}}$	no	Hall D (high luminosity)	-	$3 / 3$

Summary of the physics case

- TCS transverse target spin asymmetries are sensitive to Im part of amplitudes as well as beam spin asymmetry. Cross section sensitive to both Im and Re. Expected constrain on Im(CFFs).
- Azimuthal dependence of polarized cross $\operatorname{sections} \propto \sin \left(\varphi \pm \varphi_{S}\right)$ with $\varphi=$ lepton pair plane vs reaction plane $\left(\mathrm{y}, \mathrm{P}, \mathrm{y}^{*}\right)$ and $\varphi_{\mathrm{s}}=$ target spin vs reaction plane.
- Definition, at fix $\varphi_{\mathrm{s}}: \Delta \sigma(\varphi)=\sigma^{\dagger}\left(\varphi, \varphi_{\mathrm{s}}\right)-\sigma^{\downarrow}\left(\varphi, \varphi_{\mathrm{s}}\right)$
- 2 independent $\Delta \sigma_{U T}$ by fitting 4 sets of 2 orthogonal asymmetries: $0^{\circ} / 90^{\circ}, 22.5^{\circ} / 112.5^{\circ}$, $45^{\circ} / 135^{\circ}, 67.5^{\circ} / 157.5^{\circ}$. For presented results: fit $0^{\circ} / 90^{\circ}$.
- In total, experiment brings 4 independent observables in TCS: $\sigma, \Delta \sigma_{\odot U}, \Delta \sigma_{U T}(x 2)$.

- Fit results:

$\operatorname{Im}(\mathrm{H}), \operatorname{Im}(\mathrm{Ht}), \operatorname{Re}(\mathrm{H})$: well constrain thanks to 4 independent obs. Level of DVCS. Combination and/or comparision possible with DVCS (assuming same uncertainties on DVCS and TCS) \Rightarrow check of GPD universality with H,
\Rightarrow reduction of errors ~ factor of 2 with combination
$\operatorname{Im}(E): \sim 30 \%$ error on extracted coeff in presented example \Rightarrow unique with this experiment

- Conclusion regarding physics:

Proposed experiment will bring unique constrains on $\operatorname{Im}(E)$. It will allow to demonstrate GPD H universality by comparison of TCS and DVCS results. Thanks to 4 independent observables for the fits, the precision on fit results on TCS side could be $\sim 10 x$ better than already approved experiments. In combination with DVCS in "global" DVCS+TCS fits, uncertainties on CFF "known" from DVCS can be improved up to a factor of 2. DVCS+TCS fits with new independent constrains on $\operatorname{Im}(E)$ will also allow for better constrains on most CFF thanks to correlations.

BACKUP

TCS with transversally polarized proton

TCS+BH in y P $\rightarrow \mathbf{e + e - P :} 6$ independent variables for polarized cross sections
Choice: 3 kinematics ($\zeta, \mathrm{t}, \mathrm{Q}^{\prime 2}$), 3 angles ($\varphi_{\mathrm{CM}}, \theta_{\mathrm{CM}}, \varphi_{\mathrm{S}}$)
Transversally polarized target: $\theta_{\mathrm{s}}=90^{\circ}$, eventual corrections at $\%$ level if small rotation of axis Observables to measure: 2 orthogonal asymmetries in φ_{S}, depending on φ and φ_{S}
$A_{U T}=$ single target (transverse) spin asymmetry,
$\mathrm{A}_{\odot \top}=$ double beam (circular) and target (transverse) spin asymmetry

Observables: calculated

Approach 1 (single TSA): $A_{U T}=-\sin \left(\varphi-\varphi_{S}\right)$, at 2 fix orthogonal φ_{S} or φ values $\rightarrow 2$ independent observables sensitive to different combination of GPDs in the nucleon

Approach 1-bis (single TSA): iterative CFF extraction at various values of 2 orthogonal φ or φ_{S}

BH peaks in yellow, mostly out of acceptance (small Өlab for one lepton, low momentum for the other one) \rightarrow cut as a function of $\left(E, Q^{\prime 2}, t\right)$

2 figs on right: θ max cut, all what is above is rejected in case $\varphi=0 \pm 30^{\circ}$ or $\varphi=180^{\circ} \pm 30^{\circ}$

Lab frame correlation (without deflection)

yellow: most of the counts
weighted by TCS/BH

yellow: higher sensitivity to TCS

Choice of binning

Proposed binning for current studies, will be updated after setup optimization and more studies Important for GPDs and target spin asymmetries: thin ξ and t bins
Option for unpolarized cross section and beam spin asymmetry: $\mathrm{Q}^{\prime 2} \rightarrow$ not in presented approach

4 bins in $\xi, Q^{22}\left(\mathrm{GeV}^{2}\right)$
l) $.1<\xi<.13,4<Q^{\prime 2}<4.5$
II). $13<\xi<.16,4<Q^{\prime 2}<5.5$
III). $16<\xi<.22,4<Q^{\prime 2}<7$
IV) $.22<$ \ll $3,3, \quad 4.5<Q^{\prime 2}<9$

5 bins in -t (GeV^{2})

1). $04<-t<.1,2$) $.1<-t<.17$,
3) $.17<-t<.25,4) .25<t<.4$
5) . $4<-t<.7$

1) $.04<-t<1,2) .1<-t<.17,3) .17<-t<.25,4) .25<t<4$
5). $4<-\mathrm{t}<.7$
2) $.17<-t<.254) .25<t<.4$
5). $4<-t<.7$
4). $.25<t<.4$
5). $4<-\frac{1}{2}<.7$

Target spin asymmetry in $4 x 5$ kinematic bins vs φ, for spin along x and y

- spin along x stat errors not included
- spin along y (MC error displayed=> will be rebinned)
- size of TSA has strong dependence with φS and correlation with φ and kinematics \rightarrow in other bins, can get larger or smaller
- From .1 to .2 asymmetries: measurable but need bin optimization + proof extraction CFF from fits, in principle duable

x-axis: φ (rad) y-axis: $\mathrm{A}_{\mathrm{U} \mathrm{\perp}}(\varphi)$
 y-labels: $-0.5 \rightarrow+0.5$

