# DVCS \& TCS IN NEW HELICITY AMPLITUDES FORMALISM 

HIGH INTENSITY PHOTON SOURCE WORKSHOP CUA, FEBRUARY 6-7, 2017

Simonetta Liuti
University of Virginia

## Outline

1. Motivation
2. Helicity Amplitudes Formalism for DVCS and TCS
3. Importance of studies twist three contributions to DVCS and TCS: universality
4. Implementation in experimental analyses
5. Conclusions
6. MOTIVATION

## DVCS was proposed as an avenue to access GPDs in experiments by Ji in 1997

Department of Physics, Universoratory for Nuclear Sca, Labbridge, Massachusetts 02139; 28195 Center for Theorachusetts Institute of Teniversity of Washington
Massach
Theory, Univer

Several papers were written, after that, on the formalism for the deeply virtual exclusive electroproduction cross section
$\ldots$ Physik, Universita $\quad$. cecpited 7 Septembr
On the analysis of lepton scattering on longitudinally or transversely polarized protons

## M. Diehl ${ }^{1, \mathrm{a}}$, S. Sapeta ${ }^{2}$

${ }^{1}$ Deutsches Elektronen-Synchroton DESY, 22603 Hamburg, Germany
${ }^{2}$ M. Smoluchowski Institute of Physics, Jagellonian University, Cracow, Poland

The most complete treatment is the work by BKM*

Theory of deeply virtual Compton scattering on the nucleon
A.V. Belitsky ${ }^{\text {a,b, }, ~ D . ~ M u ̈ l l e r ~}{ }^{\text {c.d }}$, A. Kirchner ${ }^{\text {d }}$



Received 11 December 2001; accepted 25 February 2002

All extractions of leading order GPDs from experiment have been carried out following the BKM formalism

## However...

## In the past few years new developments have arisen, triggered by the quest for partonic Orbital Angular Momentum, and involving both Generalized Transverse Momentum Distributions (GTMDs) and twist three GPDs



## These developments, in turn, point at the importance of understanding QCD at the amplitude level

> Single Spin Asymmetries (SSA) as correlations of quark/proton spin and intrinsic transverse momentum/momentum transfer
> Through SSA explore how FSI/ISI probe underlying non-perturbative dynamics: from orbital motion and spin correlations to mechanisms for generating quarkantiquark pairs from flux tube $\rightarrow$ dynamical symmetry breaking and confinement properties of the theory
$>$ This physics involves orbital motion and it is not about "hand waving" models!

## PT transformation

Forward case: Sivers function (J. Collins, 2002)

PT:

$\langle P, S| \bar{\psi}(0) \gamma^{+} U(v, z) \psi(z)|P, S\rangle=\langle P,-S| \bar{\psi}(0) \gamma^{+} U(-v, z) \psi(z)|P,-S\rangle$

$f_{1}{ }^{\text {perp }, S I D I S}=M_{+}{ }^{v-} M_{-}^{v}=-f_{1} T^{\text {perr, }, D Y}=M_{+}^{-v}-M_{-}^{-v}$

## Off forward case: GTMD $\mathrm{F}_{14}$

PT:

$L_{+}{ }^{v, \Delta_{-}} L_{-}-{ }^{-v,-\Delta}=0$

## large effect from lattice (M. Engelhardt, arXiv:1701.01536)


insight into non-perturbative aspects of QCD associated with dynamical chiral symmetry breaking and confinement
Generalized LIR for straight gauge link (no FSI) $\underset{0,0}{\substack{0,0}} \underbrace{\infty}_{\text {Z;ZT }}$

Obtained by studying in detail the $k_{T}$ structure of GTMDs and twist 3 GPDs for a straight gauge link (Ji's definition)
$\mathrm{L}_{\mathrm{q}}{ }^{2}$
1.

$k_{T}$ moment of a GTMD twist 3 GPD

$$
\text { 2. }{ }^{\mathrm{L}_{\mathrm{q}}{ }^{2} \mathrm{~S}_{\mathrm{q}}^{\mathrm{Z}}} \frac{d}{d x} \int d^{2} k_{T} \frac{k_{T}^{2}}{M^{2}} G_{11}=-\left(2 \tilde{H}_{2 T}^{\prime}+E_{2 T}^{\prime}+\tilde{H}\right)
$$

A. Rajan, A. Courtoy, M. Engelhardt, S.L., PRD (2016), arXiv:1601.06117

The formalism of BKM does not allow us to include this physics in a straightforward way

Additional practical problem: in BKM it is hard to disentangle the $Q^{2}$ dependence of the various terms beyond $O\left(\mathrm{M}^{2} / \mathrm{Q}^{2}, \mathrm{t} / \mathrm{Q}^{2}\right)$ type approximations

It is timely, in view of the upcoming experiments, to have a formalism that includes in a natural way the recent developments in the cross section of polarized deeply virtual exclusive processes:

- Polarized DVCS
- DVCS with Recoil Polarization
- Timelike Compton Scattering (TCS)
- Double DVCS (DDVCS)
- More exclusive processes leading to the measurement of GTMDs

The formalism we present is based on the helicity amplitudes decomposition of the cross section, and it is more suitable for a direct use in experimental analyses/MCs
2. HELICITY AMPLITUDES FORMALISM

Dustin Keller \& U.Va. Polarized Target Group


Abha Rajan
Gary Goldstein
Osvaldo Gonzalez Hernandez

## Deeply Virtual Exclusive Photoproduction


$T\left(k, p, k^{\prime}, q^{\prime}, p^{\prime}\right)=T_{D V C S}\left(k, p, k^{\prime}, q^{\prime}, p^{\prime}\right)+T_{B H}\left(k, p, k^{\prime}, q^{\prime}, p^{\prime}\right)$,


## We extended to GPDs the formalism used in the forward case (SIDIS)

## SIDIS cross section

unpolarized target

Angle between hadron and lepton planes


## Forerunners...




## Interpretation in terms of structure functions, example

$$
F_{U U}^{\cos \phi_{h}}=\frac{2 M}{Q} \mathcal{C}\left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T}}{M_{h}}\left(x h H_{1}^{\perp}+\frac{M_{h}}{M} f_{1} \frac{\tilde{D}^{\perp}}{z}\right)-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{T}}{M}\left(x f^{\perp} D_{1}+\frac{M_{h}}{M} h_{1}^{\perp} \frac{\tilde{H}}{z}\right)\right]
$$

Convolution over transverse momenta

## Extension to DVCS

$$
\gamma^{*} p \rightarrow \gamma(M) p^{\prime}
$$



$$
\begin{gathered}
\sigma=\sigma^{U U}+h \sigma^{L U}+S_{\|} \sigma^{U L}+S_{\|} h \sigma^{L L}+S_{T} \sigma^{U T}+S_{T} h \sigma^{L T} \\
\text { example } \\
\longrightarrow \sigma^{U U}=\frac{\Gamma}{2} \sum_{h, \Lambda} \sum_{\Lambda^{\prime}, \Lambda_{\gamma}^{\prime}}\left(T_{D V C S, \Lambda \Lambda^{\prime}}^{h \Lambda_{\gamma}^{\prime}}\right)^{*} T_{D V C S, \Lambda \Lambda^{\prime}}^{h \Lambda_{\gamma}^{\prime}}
\end{gathered}
$$

## BASIC MODULE (based on helicity amplitudes)

$$
\begin{array}{r}
\frac{1}{Q^{2}} \frac{1}{1-\epsilon}\left\{\left(F_{\Lambda+}^{11}+F_{\Lambda-}^{11}+F_{\Lambda+}^{-1-1}+F_{\Lambda-}^{-1-1}\right)+\epsilon\left(F_{\Lambda+}^{00}+F_{\Lambda-}^{00}\right)\right. \\
+2 \sqrt{\epsilon(1+\epsilon)} \operatorname{Re}\left(-F_{\Lambda+}^{01}-F_{\Lambda-}^{01}+F_{\Lambda+}^{0-1}+F_{\Lambda-}^{0-1}\right)+2 \epsilon \operatorname{Re}\left(F_{\Lambda+}^{1-1}+F_{\Lambda-}^{1-1}\right) \\
\text { polarized lepton } \begin{array}{l}
+(2 h)\left[\sqrt{1-\epsilon^{2}}\left(F_{\Lambda+}^{11}+F_{\Lambda-}^{11}-F_{\Lambda+}^{-1-1}-F_{\Lambda-}^{-1-1}\right)\right. \\
\left.\left.-2 \sqrt{\epsilon(1-\epsilon)} \operatorname{Re}\left(F_{\Lambda+}^{01}+F_{\Lambda-}^{01}+F_{\Lambda+}^{0-1}+F_{\Lambda-}^{0-1}\right)\right]\right\}
\end{array}
\end{array}
$$

Helicity amplitudes
Virtual Photon helicities


Initial and final proton helicities

## The unpolarized cross section: example

$$
\sigma^{U U}=\frac{\Gamma}{Q^{2}(1-\epsilon)}\left[F_{U U, T}+\epsilon F_{U U, L}+\epsilon \cos 2 \phi F_{U U}^{\cos 2 \phi}+\sqrt{\epsilon(\epsilon+1)} \cos \phi F_{U U}^{\cos \phi}\right]
$$

$$
\begin{aligned}
F_{U U, T} & =2\left(F_{++}^{11}+F_{+-}^{11}+F_{-+}^{11}+F_{--}^{11}\right) \\
F_{U U, L} & =2 F_{++}^{00} \\
F_{U U}^{\cos \phi} & =\operatorname{Re}\left[F_{++}^{01}+F_{--}^{01}\right] \\
F_{U U}^{\cos 2 \phi} & =\operatorname{Re}\left[F_{++}^{1-1}+F_{+-}^{1-1}+F_{-+}^{1-1}+F_{--}^{1-1}\right]
\end{aligned}
$$

Twist 2
Twist 4
Twist 3
Photon helicity flip: transverse gluons

## Phase dependence

$$
f \rightarrow e^{i\left[\Lambda_{\gamma^{*}}-\Lambda_{\gamma^{\prime}}-\left(\Lambda-\Lambda^{\prime}\right)\right] \phi}
$$

The phase is determined entirely by the virtual photon helicity which can be different for the amplitude and its conjugate

## Interpretation in terms of GPDs

Twist 2

$$
\begin{aligned}
& A_{++,++}=\sqrt{1-\xi^{2}}\left(\frac{H+\widetilde{H}}{2}-\frac{\xi^{2}}{1-\xi} \frac{E+\widetilde{E}}{2}\right) \\
& A_{+-,+-}=\sqrt{1-\xi^{2}}\left(\frac{H-\widetilde{H}}{2}-\frac{\xi^{2}}{1-\xi} \frac{E-\widetilde{E}}{2}\right) \\
& A_{++,-+}=-\frac{\Delta_{1}+i \Delta_{2}}{t_{0}-t} \frac{t_{0}-t}{2 M} \frac{E-\xi \widetilde{E}}{2}
\end{aligned}
$$

$A_{-+,++}=\frac{\Delta_{1}-i \Delta_{2}}{t_{0}-t} \frac{t_{0}-t}{2 M} \frac{E+\xi \widetilde{E}}{2}$

$$
\begin{aligned}
f_{++}^{11} & =\sqrt{1-\xi^{2}}\left(\mathcal{H}+\tilde{\mathcal{H}}-\frac{\xi^{2}}{1-\xi^{2}}(\mathcal{E}+\widetilde{\mathcal{E}})\right) \\
f_{--}^{11} & =\sqrt{1-\xi^{2}}\left(\mathcal{H}-\tilde{\mathcal{H}}-\frac{\xi^{2}}{1-\xi^{2}}(\mathcal{E}-\widetilde{\mathcal{E}})\right) \\
f_{+-}^{11} & =e^{-i \phi} \frac{\sqrt{t_{0}-t}}{2 M}(\mathcal{E}+\xi \widetilde{\mathcal{E}}) \\
f_{-+}^{11} & =-e^{i \phi} \frac{\sqrt{t_{0}-t}}{2 M}(\mathcal{E}-\xi \widetilde{\mathcal{E}})
\end{aligned}
$$

$$
\begin{aligned}
& F_{++}^{11}=\left(1-\xi^{2}\right)|\mathcal{H}+\tilde{\mathcal{H}}|^{2}-\xi^{2}\left[\left(\mathcal{H}^{*}+\widetilde{\mathcal{H}}\right)^{*}(\mathcal{E}+\widetilde{\mathcal{E}})+(\mathcal{H}+\widetilde{\mathcal{H}})\left(\mathcal{E}^{*}+\widetilde{\mathcal{E}}^{*}\right)\right] \\
& F_{--}^{11}=\left(1-\xi^{2}\right)|\mathcal{H}-\tilde{\mathcal{H}}|^{2}-\xi^{2}\left[\left(\mathcal{H}^{*}-\tilde{\mathcal{H}}\right)^{*}(\mathcal{E}-\widetilde{\mathcal{E}})+(\mathcal{H}-\tilde{\mathcal{H}})\left(\mathcal{E}^{*}-\widetilde{\mathcal{E}}^{*}\right)\right] \\
& F_{+-}^{11}=\frac{t_{0}-t}{4 M^{2}}|\mathcal{E}+\xi \widetilde{\mathcal{E}}|^{2} \\
& F_{-+}^{11}=\frac{t_{0}-t}{4 M^{2}}|\mathcal{E}-\xi \widetilde{\mathcal{E}}|^{2}
\end{aligned}
$$

## Twist 3

$$
f_{\Lambda^{\prime}}^{01}=g_{-*}^{01} \otimes A_{\Lambda^{\prime},, \Lambda_{-}^{*}}+g_{-+}^{01} \otimes A_{\Lambda^{\prime}+*, \Lambda-}^{0-}+g_{+^{*}-}^{01} \otimes A_{\Lambda^{\prime}, \Lambda \Lambda^{*}}+g_{+-}^{01} \otimes A_{\Lambda^{\prime}-*, \Lambda+}^{01}
$$

"Bad" component (exchanged gluon flips the quark chirality)


We connect the tw 3 amps DVCS formalism with the TMD, GPD, GTMD comprehensive parametrization in Meissner Metz and Schlegel, JHEP08 (2009)

Example

$$
\begin{aligned}
A_{+-,++*} & =\frac{1}{2}\left(\tilde{E}_{2 T}-\bar{E}_{2 T}+\tilde{E}_{2 T}^{\prime}+\bar{E}_{2 T}^{\prime}\right) \\
A_{+-*,++} & =\frac{1}{2}\left(-\tilde{E}_{2 T}+\bar{E}_{2 T}+\tilde{E}_{2 T}^{\prime}+\bar{E}_{2 T}^{\prime}\right)
\end{aligned}
$$

Spin Orbit interaction
Orbital angular momentum

## DVCS: bilinears of tw 2 and tw 3 CFFs

$$
F_{++}^{01}=\mathcal{P}\left[\mathcal{H}^{*}\left(\tilde{\mathcal{E}}_{2 T}-\overline{\mathcal{E}}_{2 T}+\ldots\right), \ldots\right]
$$



Preliminary extraction from experiment using Wandzura Wilczek approximation
A.Courtoy, G.Goldstein, O.Gonzalez Hernandez, S.L. and A.Rajan, PLB 731(2014)


BH

## BH Amplitude

$$
T_{B H, \Lambda, \Lambda^{\prime}}^{h \Lambda_{\gamma}^{\prime}}\left(k, p, k^{\prime}, q^{\prime}, p^{\prime}\right)=\frac{1}{\Delta^{2}} \sum_{\tilde{\Lambda}_{\gamma}} B_{h, \Lambda_{\gamma}^{\prime}}^{\tilde{\Lambda}_{\gamma}}\left(k, k^{\prime}, q^{\prime}\right) J_{\Lambda \Lambda^{\prime}}^{\tilde{\Lambda}_{\gamma}}\left(p, p^{\prime}\right)
$$

## Lepton part

$$
\begin{align*}
& \bar{u}\left(k^{\prime}, h\right)\left[\gamma^{\mu}\left(\not k^{\prime}+q^{\prime}\right) \gamma^{\nu} \frac{1}{\left(k^{\prime}+q^{\prime}\right)^{2}}+\gamma^{\nu}\left(k-q^{\prime}\right) \gamma^{\mu} \frac{1}{\left(k-q^{\prime}\right)^{2}}\right] u(k, h) \epsilon_{\mu}^{* N_{\gamma}^{\prime}}\left(q^{\prime}\right) \epsilon_{\nu}^{* \tilde{\Lambda}_{\gamma}}(\Delta) / \Delta^{2} \\
& =L_{h}^{\mu \nu} \epsilon_{\mu}^{* \Lambda_{\gamma}^{\prime}}\left(q^{\prime}\right) \epsilon_{\nu}^{* \tilde{\Lambda}_{\gamma}}(\Delta)=B_{h, \Lambda_{\gamma}}^{\tilde{\Lambda}_{\gamma}} .
\end{align*}
$$

## Hadron part

$\bar{U}\left(p^{\prime}, \Lambda^{\prime}\right) \Gamma_{\nu} U(p, \Lambda)=\bar{U}\left(p^{\prime}, \Lambda^{\prime}\right)\left[\left(F_{1}\left(-\Delta^{2}\right)+F_{2}\left(-\Delta^{2}\right)\right) \gamma^{\nu}-\frac{\left(p+p^{\prime}\right)^{\nu}}{2 M} F_{2}\left(-\Delta^{2}\right)\right] U(p, \Lambda)$,

## The BH term can be calculated exactly (QED+ proton form factors)

$$
\begin{aligned}
\tilde{B}_{h, \Lambda_{\gamma}}^{\tilde{\Lambda}_{\gamma}(1)}= & \left\{\sqrt { \frac { \gamma ^ { 2 } y ^ { 2 } + 4 y - 4 } { y - 1 } } ( \frac { x _ { B } M _ { p } } { 4 \gamma ^ { 2 } } ) \left(2 h\left(\tilde{\Lambda}_{\gamma} \cos \left(\theta^{\prime}\right)-\cos (\theta) \Lambda_{\gamma}^{\prime}\right) \frac{\gamma^{2}}{\sqrt{\gamma^{2}+1}}+\right.\right. \\
& \left.\left.\left(\tilde{\Lambda}_{\gamma} \Lambda_{\gamma}^{\prime}\left(\gamma^{2} \cos (\theta) \cos \left(\theta^{\prime}\right)-2 \sin (\theta) \sin \left(\theta^{\prime}\right)\right)-\gamma^{2}\right) \frac{(y-2)}{\left(\gamma^{2}+1\right) y}\right)\right\}
\end{aligned}
$$

- 1 of 5 numerator terms for the

$$
+\cos (\phi)\left\{( \frac { x _ { B } M _ { p } } { 2 \gamma } ) \Lambda _ { \gamma } ^ { \prime } \left[\tilde { \Lambda } _ { \gamma } \left(\sin \left(\theta-\theta^{\prime}\right) \frac{4 \sqrt{1-y}}{\left(\gamma^{2}+1\right) y}+\sin \left(\theta+\theta^{\prime}\right) \frac{y}{\left(\gamma^{2}+1\right) \sqrt{1-y}}-\right.\right.\right.
$$ lepton part!

$$
\left.\left.\left.\cos (\theta) \sin \left(\theta^{\prime}\right) \frac{\left(1-\gamma^{2}\right) y}{\left(\gamma^{2}+1\right) \sqrt{1-y}}\right)+2 h \sin (\theta) \frac{(2-y)}{\sqrt{\gamma^{2}+1} \sqrt{1-y}}\right]\right\}
$$

$$
-\cos (2 \phi)\left\{\sqrt { \frac { \gamma ^ { 2 } y ^ { 2 } + 4 y - 4 } { y - 1 } } ( \frac { x _ { B } M _ { p } } { 4 } ) \left(\left(1+\bar{\Lambda}_{\gamma} \cos (\theta) \Lambda_{\gamma}^{\prime} \cos \left(\theta^{\prime}\right)\right) \frac{(2-y)}{\left(\gamma^{2}+1\right) y}+\right.\right.
$$

$$
\left.\left.2 h\left(\bar{\Lambda}_{\gamma} \cos \left(\theta^{\prime}\right)+\cos (\theta) \Lambda_{\gamma}^{\prime}\right) \frac{1}{\sqrt{\gamma^{2}+1}}\right)\right\}
$$

$$
+\sin (\phi)\left\{i ( \frac { x _ { B } M _ { P } } { 2 \gamma } ) \left(\tilde{\Lambda}_{\gamma} \sin \left(\theta^{\prime}\right) \frac{\left(\gamma^{2} y^{2}+4 y-4\right)}{\left(\gamma^{2}+1\right) \sqrt{1-y} y}-\right.\right.
$$

$$
\left.\left.2 h \bar{\Lambda}_{\gamma} \Lambda_{\gamma}^{\prime} \sin (\theta) \cos \left(\theta^{\prime}\right) \frac{(y-2)}{\sqrt{\gamma^{2}+1} \sqrt{1-y}}+\Lambda_{\gamma}^{\prime} \sin (\theta) \frac{(y-2)^{2}}{\left(\gamma^{2}+1\right) \sqrt{1-y} y}\right)\right\}
$$

$$
\begin{gather*}
-\sin (2 \phi)\left\{\sqrt { \frac { \gamma ^ { 2 } y ^ { 2 } + 4 y - 4 } { y - 1 } } ( \frac { x _ { B } M _ { p } } { 4 } ) \left(i 2 h\left(1+\tilde{\Lambda}_{\gamma} \cos (\theta) \Lambda_{\gamma}^{\prime} \cos \left(\theta^{\prime}\right)\right) \frac{1}{\sqrt{\gamma^{2}+1}}+\right.\right. \\
\left.\left.\left(\tilde{\Lambda}_{\gamma} \cos \left(\theta^{\prime}\right)+\cos (\theta) \Lambda_{\gamma}^{\prime}\right) \frac{(2-y)}{\left(\gamma^{2}+1\right) y}\right)\right\} \tag{3}
\end{gather*}
$$

## BH-DVCS interference

$$
\mathcal{I}=\left(T_{B H, \Lambda \Lambda^{\prime}}^{h \Lambda_{\gamma}^{\prime} *} T_{D V C S, \Lambda \Lambda^{\prime}}^{h \Lambda_{\gamma}^{\prime}}+T_{D V C S, \Lambda \Lambda^{\prime}}^{h \Lambda_{\gamma}^{\prime} *} T_{B H, \Lambda \Lambda^{\prime}}^{h \Lambda_{\gamma}^{\prime}}\right)
$$

## BASIC MODULE

$$
\begin{aligned}
& \sum_{\Lambda^{\prime}, \Lambda^{\prime}}\left(T_{B H, A \Lambda^{\prime}}^{h S^{\prime}}\right)^{*} T_{D V C S, \Lambda \Lambda^{\prime}}^{h S^{\prime}}+\left(T_{D V C S, \Delta \Lambda^{\prime}}^{h S^{\prime}}\right)^{*} T_{B H, A \Lambda^{\prime}}^{h \Lambda^{\prime}}
\end{aligned}
$$

- Phase-dependence allowing us to separate out tw 2 from tw 3 terms comes entirely from here
- The rest is a "contamination" that we calculate exactly


## 3. IMPORTANCE OF DVCS AND TCS COMPARISON

## All the formalism shown above is extended straightforwardly to TCS

In TCS there are important differences:

- one can use the linearly polarized photons to measure the asymmetries sensitive to the polarized GPDs (Goritschnig, Pire, Wagner, PRD 2014) ...
- NLO weighs more
- etc....
... but we don't want to use TCS as an ancillary process to DVCS!


## An argument that cannot be refused...

## Universality/process dependence of parton distributions




"SIDIS-like"


## Two additional processes: DVCS and TCS twist three contributions



## DVCS



Extracting twist 3 GPDs from these processes will allow us to zoom into aspects of the "sign change"

## 4. IMPLEMENTATION IN EXPERIMENTAL ANALYSES

## Implementation in experimental analysis

- We provide (Dustin) with all the necessary terms that are necessary to extract any given observable (for example we focused on the unpolarized cross section)
- We run the MC with model GPDs to validate the procedure by verifying that the initial model corresponds to the output
- We have a tool that can be both tested with other models and used with real data to constrain the models parameters and to obtain GPD shapes

A variety of GPD models

- Extracting GPD from increasingly precise sets of data will involve elements of Information Theory (see D. Ireland, analysis of pseudoscalar meson photoproduction PRD82 2010)
- Issue of finding a parametric functional form given the enhanced complexity (neural network? E. Askanazi and S.L., JPhys G42, 2015)
- From the structure functions of DIS

$$
f\left(x, Q_{o}^{2}\right)=A_{q, g} x^{-\alpha_{q, g}}(1-x)^{\beta_{q, g}} F\left(x, c_{q, g}, d_{q, g}, \ldots\right)
$$

## $\square$

to the Compton Form Factors of DVCS, DVMP, TCS, ...

$$
\begin{aligned}
& H_{q_{v}}\left(x, \xi, t ; Q_{o}^{2}\right)= \\
& H_{\bar{q}}\left(x, \xi, t ; Q_{o}^{2}\right)= \\
& H_{g}\left(x, \xi, t ; Q_{o}^{2}\right)=
\end{aligned}
$$

## Covariant Scattering Matrix/spectator model


k = quark, anti-quark (flavor separation from combination of $\Lambda_{X}=0,1$ )
$\mathrm{P}, \Lambda$


## Quark GPDs (with Hessian error not shown)

$\mathrm{X}_{\mathrm{Bj}}=0.13$
$\mathrm{Q}^{2}=1.1 \mathrm{GeV}^{2}$
$0.1<-\mathrm{t}<1.1 \mathrm{GeV}^{2}$


Valence quarks parameters constrained by polynomiality

| Parameters | $H$ | $E$ | $\widetilde{H}$ | $\widetilde{E}$ |
| :---: | :---: | :---: | :---: | :---: |
| $m_{u}(\mathrm{GeV})$ | 0.420 | 0.420 | 2.624 | 2.624 |
| $M_{X}^{u}(\mathrm{GeV})$ | 0.604 | 0.604 | 0.474 | 0.474 |
| $M_{\Lambda}^{u}(\mathrm{GeV})$ | 1.018 | 1.018 | 0.971 | 0.971 |
| $\alpha_{u}$ | 0.210 | 0.210 | 0.219 | 0.219 |
| $\alpha_{u}^{\prime}$ | $2.448 \pm 0.0885$ | $2.811 \pm 0.765$ | $1.543 \pm 0.296$ | $5.130 \pm 0.101$ |
| $p_{u}$ | $0.620 \pm 0.0725$ | $0.863 \pm 0.482$ | $0.346 \pm 0.248$ | $3.507 \pm 0.054$ |
| $\mathcal{N}_{u}$ | 2.043 | 1.803 | 0.0504 | 1.074 |
| $\chi^{2}$ | 0.773 | 0.664 | 0.116 | 1.98 |
| $m_{d}(\mathrm{GeV})$ | 0.275 | 0.275 | 2.603 | 2.603 |
| $M_{X}^{d}(\mathrm{GeV})$ | 0.913 | 0.913 | 0.704 | 0.704 |
| $M_{\Lambda}^{d}(\mathrm{GeV})$ | 0.860 | 0.860 | 0.878 | 0.878 |
| $\alpha_{d}$ | 0.0317 | 0.0317 | 0.0348 | 0.0348 |
| $\alpha_{d}^{\prime}$ | $2.209 \pm 0.156$ | $1.362 \pm 0.585$ | $1.298 \pm 0.245$ | $3.385 \pm 0.145$ |
| $p_{d}$ | $0.658 \pm 0.257$ | $1.115 \pm 1.150$ | $0.974 \pm 0.358$ | $2.326 \pm 0.137$ |
| $\mathcal{N}_{d}$ | 1.570 | -2.800 | -0.0262 | -0.966 |
| $\chi^{2}$ | 0.822 | 0.688 | 0.110 | 1.00 |

Gluons in DGLAP region


## Nuclei: DVCS from ${ }^{4} \mathrm{He}$ EG6, M. Hattawy

 et al.tw 2


One can measure the spin orbit term as a twist 3 spin orbit correlation in ${ }^{4} \mathrm{He}$ !

## Conclusions

- A wealth of physics studies on QCD at the amplitude level can be extracted from the comparison of DVCS and TCS
- We presented an helicity based formalism for deeply virtual exclusive electron proton scattering processes
- This formalism allows us to interpret the DVCS cross section twist three GPDs contribution in a clear way, because it organizes the spurious $Q^{2}$ dependence from both the BH contamination and from kinematical terms
- It also allows us to connect to experiment directly (analyses using data are on their way)
- Complete results for TCS are on their way


