Studies on Wide Dynamic Range SiPMs with Large Pixel Densities

Zhiyu Zhao (TDLI/SJTU), zhiyuzhao@sjtu.edu.cn

On behalf of CEPC Calorimeter Working Group

The 20th International Conference on Calorimetry in Particle Physics

May 20-24, 2024, Tsukuba

Tsung-Dao Lee Institute

SiPM in Optical Calorimeters

	Project	Scintillator/WLS	Photodetector	$\mathbf{D}\mathbf{R}\mathbf{D}\mathbf{T}\mathbf{s}$	Target
	Task 3.1: Homoge	ers			
	HGCCAL	BGO, LYSO	SiPMs	6.1, 6.2	e ⁺ e ⁻
er	MAXICC	PWO, BGO, BSO	SiPMs	6.1,6.2	e^+e^-
	Crilin	PbF_2 , PWO-UF	SiPMs	6.2, 6.3	$\mu^+\mu^-$
	Task 3.2: Innovative Sampling EM calorimeters				
	GRAiNITA	$ZnWO_4$, BGO	SiPMs	6.1, 6.2	e^+e^-
	\mathbf{SpaCal}	GAGG, organic	MCP-PMTs,SiPMs	6.1,6.3	e^+e^-/hh
	RADiCAL	LYSO, LuAG	SiPMs	6.1,6.2,6.3	e^+e^-/hh
	Task 3.3: (EM+)	Hadronic sampling calor			
	DRCal	PMMA, plastic	SiPMs, MCP	6.2	e^+e^-
	TileCal	PEN, PET	SiPMs	6.2, 6.3	$\mathrm{e^+e^-/hh}$
	Task 3.4: Materia				
	$\mathbf{ScintCal}$	-	-	6.1, 6.2, 6.3	$e^+e^-/\mu^+\mu^-/hh$
	CryoDBD Cal	TeO, ZnSe, LiMoO	n.a.	-	DBD experiments
		NaMoO, ZnMoO			

SiPM is widely used in future colliders

DRD 6: Calorimetry

~8000ph/MeV for BGO, dynamic range is essential for homogenous calorimeter readout by SiPM

New Detector for CEPC

- CEPC: future lepton collider
 - Higgs/W/Z bosons, top, BSM searches, etc.
 - Precision jet measurement
 - Particle-Flow Algorithm (PFA)
 - High-granularity calorimeter: separation of showers
- "CEPC 4th concept" detector design
 - High-granularity crystal ECAL with homogenous structure
 - 5D detector: 3D spatial + energy + time
 - Excellent energy resolution: $\sim 3\%/\sqrt{E} \oplus \sim 1\%$

Development of a novel high granularity crystal electromagnetic calorimeter

Dynamic Range Specification of Crystal ECAL

Key Parameters	Value	Remarks	
MIP light yield	~200 <u>p.e.</u> /MIP	~8.9 MeV/MIP in 1 cm BGO	
Dynamic range	1~4.5×10 ⁵ p.e. per channel	Deposited energy up to 40 GeV per crystal bar	
Energy threshold	0.1 MIP	Depends on S/N and light yield	
Timing resolution	~400 ps @ 1 MIP	Ideal value from Geant4 simulation	
Crystal non-uniformity	< 1%	Calibration precision	
Temperature stability	Stable at ~0.05 Celsius	Reference from CMS ECAL	
Gap tolerance	~100 µm	TBD	

TSUNG-DAO LEE INSTITUTE

Experiment to Measure the Intrinsic Dynamic Range of SiPM

- Setup
 - Pico-second laser: <40ps pulse width, 405nm wavelength
 - SiPM: DUT with large pixel numbers
 - PMT/Si-PD: scaler
- Linear region of the PMT can be extended by reducing its bias voltage

	Table of	measured SiPMs
--	----------	----------------

SiPM Model	Active Area(<i>mm</i> ²)	Pixel Pitch(<i>µm</i>)	Pixel Number
HPK S13360-6025PE	6 × 6	25	57,600
HPK S14160-3010PS	3 × 3	10	89,984
NDL EQR06 11-3030D-S	3 × 3	6	244,719

Operation Modes Selection for PMT

- Select the linear regions of PMT with a Si-PIN at different light intensities ٠
 - High gain mode: 600V bias voltage, applied in weak light ٠
 - Low gain mode : 500V bias voltage, applied in strong light •
- Combination of discrete linear regions can keep PMT's linear output within ٠ the whole light range

TSUNG-DAO LEE INSTITUTE

PMT Gain Calibration

- Gain of PMT at 600V is not high enough to discriminate single pe
- Let the number of pe detected by PMT same as that by SiPM at weak light region
- After calibration, Linear region of PMT can cover the response range of SiPM

Intrinsic Dynamic Range of SiPM in Laser Test

- Picosecond laser as source, no pixel multi-fired effect
- Saturation values of SiPM with 25µm or 10µm pixels are close to but a little smaller than their pixels number
- For SiPM with 6µm pixels: Non-linearity starts at very beginning region, and the saturation value is only half of its pixel number

Toy Monte Carlo of SiPM Response

- Major properties of SiPM including:
 - pixel density, fill factor, quantum efficiency & avalanche probability, crosstalk, etc.

TSUNG-DAO LEE INSTITUTE

Simulation of SiPM – Laser Light

- Assume the detected time is the same for all photons
- Result of MC is strictly saturated to pixel number, a little larger than experiment data.
- If we ignore the gap between data and MC, the simulation results can describe the experimental trend well.

Toy Monte Carlo including

- SiPM pixel density, PDE spectrum, crosstalk
- BGO emission spectrum

Detected Time of Scintillation Photons

- Photon detected time is critical for SiPM response
- Time duration is ~2µs, because of the slow component(300ns) in BGO and long transportation length
 - Pixels in SiPM can be fired multiple times

Waveform Simulation and Charge Distribution of Multi-fired Effect

- Number of detected photons can be determined by waveform integral(QDC)
- Waveforms of single photoelectron obtained from fitting for measurement
- For multi-fired situation in single pixel, the total charge is not a simply sum of individual PEs, but depends on recovery state of the pixel

SiPM electronical model

Simulation of SiPM – BGO Scintillation Light

- 6µm SiPM displays enough dynamic range(<5% non-linearity at 4.5×10^5 pe) for ECAL specification
- Provide a method to correct on the saturation effect of SiPM

Toy Monte Carlo including

- SiPM pixel density, PDE spectrum, crosstalk, waveform properties, pixel multi-fired effect
- BGO emission spectrum, detected time of scintillation photon

د < 13 >

TSUNG-DAO LEE INSTITUTE

Examination with Beamtest

- Beamtest of LYSO crystals to examine the saturation correction method
 - 2.5 × 2.5 × 4/5*cm*³ LYSO, HPK S14160-3010PS, ~150 p.e./MeV
- Simulated energy deposit deviates significantly from data, because of the large light output by LYSO
- SiPM saturation can be well described with Toy Monte Carlo

R&D of DarkSHINE ECAL

Beamtest at DESY TB22, Oct. 2023, 1-5GeV e-

TSUNG-DAO LEE INSTITUTE

- Design an experiment to measure the dynamic range of SiPM with large pixel number using PMT.
- Build a MC model for simulate SiPM behavior when measuring the laser light and scintillation light. The model can be used to correct the saturation effect of SiPM.
- Need more tests to understand the gap between experiment and simulation.
- Examine the method with more types of scintillators and SiPMs.

EM Energy Resolution: Threshold and Light Yield Requirements

- Impact of hit threshold and light yield
 - Digitization: photon statistics (crystal + SiPM), electronics resolution
 - 200 p.e./MIP is enough for $3\%/\sqrt{E}$, low threshold is promising for $1.6\%/\sqrt{E}$

Measurement with Laser Diode

- Laser diode with a driver circuit
 - 1.6W diode, 450nm peak wavelength, <5ns pulse width, kHz trigger rate(by AWG),
 0~30V power supply
- The pulse duration is longer than pixel recovery time. The detected pe number can exceed the saturation value.

Pixel recovery

TSUNG-DAO LEE INSTITUTE