Unpolarized TCS

 studies with C12-18-005 experiment
Introduction

\diamond Physical motivation : Understand the proton's structure
\diamond We can do it by the way of the TCS reaction.
\diamond Goals: unpolarized events statistics and Q^{2} evolution, look at low Q^{2} events, fiducial cuts and signal lost.

Feynman diagram of TCS

Two-dimensional graphs representing the number of events measured depending on two variables $\left(Q^{2}, \xi\right.$ or $\left.-t\right)$ weighed by the cross section.

$$
0.1 \leq-t<0.2 G e v^{2}
$$

Red:
$0,1 \leq \xi<0,15 \mathrm{Gev}^{2}$ and $4 \leq Q^{2}<4.3 \mathrm{Gev}^{2}$
Green:
$0,1 \leq \xi<0,15$ Gev 2 and $4.3 \leq Q^{2}<5.5$ Gev 2
Magenta:
Cyan:

$0.2 \leq-t<1$ Gev 2
$0,1 \leq \xi<0,16$ Gev 2 and $4 \leq Q^{2}<6$ Gev 2
$0,16 \leq \xi<0,19 \mathrm{Gev}^{2}$ and $4.3 \leq Q^{2}<7 \mathrm{Gev}^{2}$
$0,19 \leq \xi<0.35 \mathrm{Gev}^{2}$ and $4 \leq Q^{2}<5.5 \mathrm{Gev}^{2}$
$0,19 \leq \xi<0.35 \mathrm{Gev}^{2}$ and $5.5 \leq Q^{2}<9 \mathrm{Gev}^{2}$

Number of events measured depending on the angle $\phi_{C M}$ weighted by the cross section

First look at low Q^{2} data

Number of events measured for 30 days depending on the angle $\theta_{\text {lab }}$ from the proton

For high Q^{2} : maximum events at 40° (0.7 rad).

For low Q^{2} : maximum events at 54° (0.95 rad).
\Rightarrow We can measure only the lower $\boldsymbol{\theta}_{\text {lab }}$ tail for the low \boldsymbol{Q}^{2} data set.

$$
\begin{aligned}
& 0,1 \leq-t \leq 1 \mathrm{Gev}^{2} \\
& 4 \leq Q^{2} \leq 9 \mathrm{Gev}^{2} \\
& 0.1 \leq \xi \leq 0.35 \mathrm{Gev}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 0,04 \leq-t \leq 1.54 \mathrm{Gev}^{2} \\
& 0.8 \leq Q^{2} \leq 5.3 \mathrm{Gev}^{2} \\
& 0.01 \leq \xi \leq 0.35 \mathrm{Gev}^{2}
\end{aligned}
$$

Reduction of the

 background noise: how much signal do we lose?Number of generated events measured for 30 days depending on $-t$ with cuts of $\theta_{\text {lab }}$ at $2^{\circ}, 4^{\circ}$ and 6° at vertex.

- Maximum number of events measured:
$\diamond 2^{\circ}: 600.10^{9}$
$\diamond 4^{\circ}: 525.10^{9}$
$\rightarrow 6^{\circ}: 400.10^{9}$
\diamond Diminution:
$\diamond 2^{\circ} \rightarrow 4^{\circ}: 12 \%$
$\diamond 2^{\circ} \rightarrow 6^{\circ}: 33 \%$

