Simutanous Access to DVCS and DVMP at large skeweness

Wenliang (Bill) Li, Justin Stevens
College of William and Mary

Garth Huber
University of Regina, Canada

WILLIAM ©゚ Mary

What is Backward Angle Physics

Backward Angle physics: Access to a unknown kinematics

What can we learn from the backward angle observable?

- Why Now?
- Backward angle cross section is demonstrated to be non-zero!
- Compete picture of $-t$ evolution
- Provide low -u cross section
- Regge Model
- Study the baryon Regge pole (trajectory)
- GPD factorization at larger -t in the backward angle
- Alternate or parallel methodology
- Quantify physics meaning of u
- t-> impact parameter

- s-> invariant mass
- Q^{2}-> Resolving power
- u -> ?
- better understanding t leads to understand of u
$p\left(e, e^{\prime} p\right) X$

At What Kinematics?

Requirements for Backward Angle DVCS and π^{0} Program

- Backward angle π^{0} Program
- $W=2.65 \mathrm{GeV}, x=0.36, Q^{2}=3,4$ GeV
- Standard L/T Separation
- Do nStandarSHMS + HMS
- Missing mass reconstraction method applies.

Hall A Backward Angle Virtual
Compton Scattering, 2009

- Backward Angle DVCS Program
- Run simultanously with the π^{0} Program
- LT Separation?
- Requireds NPS for $\sim 300 \mathrm{MeV}$ real photon (possible?)
- A three ton stand required.
- Triple conincidence
- LOI for PAC 2018

Thanks You

