Simutanous Access to DVCS and DVMP at large skeweness

Wenliang (Bill) Li, Justin Stevens College of William and Mary

Garth Huber University of Regina, Canada

What is Backward Angle Physics

Backward Angle physics: Access to a unknown kinematics

What can we learn from the backward angle observable?

- Why Now?
 - Backward angle cross section is demonstrated to be non-zero!
- Compete picture of *-t* evolution
 - Provide low -u cross section
- Regge Model
 - Study the baryon Regge pole (trajectory)
- GPD factorization at larger -t in the backward angle
 - Alternate or parallel methodology
- Quantify physics meaning of u
 - t -> impact parameter
 - s-> invariant mass
 - \circ Q² -> Resolving power
 - u -> ?
 - better understanding t leads to understand of u

 Q^2 =1 GeV, *W*=1.5 GeV

How Do We access the backward angle physics?

At What Kinematics?

Requirements for Backward Angle DVCS and π^0 Program

■ Backward angle π^0 Program

• $W = 2.65 \text{ GeV}, x = 0.36, Q^2 = 3, 4$ GeV

- Standard L/T Separation
 - Do nStandarSHMS + HMS
- Missing mass reconstraction method applies.
- Backward Angle DVCS Program
 - Run simultaneously with the π^0 Program
 - LT Separation?
 - Requireds NPS for ~300 MeV real photon (possible?)
 - A three ton stand required.
 - Triple conincidence
- LOI for PAC 2018

Hall A Backward Angle Virtual Compton Scattering, 2009

Thanks You

8