A Search for a Nonzero Strange Form Factor of the Proton at $2.5(\mathrm{GeV} / \mathrm{c})^{2}$

R. Beminiwattha, C. Palatchi, K. Paschke, and B. Wojtsekhowski

Collaboration

R.Beminiwattha, S.P.Wells, N.Simicevic, C.Palatchi, K.Paschke, S.Ali, X.Bai, G.Cates, R.Lindgren, N.Liyanage, V.Nelyubin, X.Zheng, B.Wojtsekhowski, S.Barcus, A.Camsonne, R.Carlini, S.Covrig Dusa, P.Degtiarenko, D.Gaskell, O.Hansen, D.Higinbotham, D.Flay, D.Jones, M.Jones, C.Keppel, D.Meekins, R.Michaels, B.Reydo, G.Smith, H.Szumila-Vance, A.S.Tadepalli, T.Horn, E.Cisbani, E.King, J.Napolitano, P.M.King, P.A.Souder, D.Hamilton, O.Jevons, R.Montgomery, P.Markowitz, E.Brash, P.Monaghan, T.Hobbs, G.Miller, J.Lichtenstadt, T.Kolar, E.Piasetzky, G.Ron, D.Armstrong, T.Averett, S.Mayilyan, H.Mkrtchyan, A.Mkrtchyan, A.Shahinyan, V.Tadevosyan, H.Voskanyan, W.Tireman, P.Datta, E.Fuchey, A.J.R.Puckett, S.Seeds, C.Munoz-Camacho

PAC50 report

Scientific Rating: N/A

Recommendation: Deferred
Title: A Search for a Nonzero Strange Form Factor of the Proton at $2.5(\mathrm{GeV} / \mathrm{c})^{2}$
Spokespersons: R. Beminiwattha, C. Palatchi, K. Paschke, B. Wojtsekhowski (contact)
Motivation: The experiment aims at measuring the strange quark contribution to the proton electromagnetic form factors. This is crucial for their flavour decomposition. This compelling physics case is motivated by recent progress in lattice QCD calculations and by phenomenological models highlighting the potential of a measurement at large Q^{2}.

Measurement and Feasibility: The experiment proposes to measure the parity violation asymmetry in electron-proton scattering at $\mathrm{Q}^{2}=2.5(\mathrm{GeV} / \mathrm{c})^{2}$. For this purpose, modules of the existing HCAL and NPS need to be rebuilt in a very different detector arrangement, and a new scintillator-based hodoscope (a 45700 channel scintillator array read out by fibers and pixel PMTs) needs to be built. Although the setup is very simple from the kinematic point of view and the measurement is largely limited by statistical uncertainty, the PAC is concerned by the lack of several important experimental details in the proposal.

Issues: The PAC would like to see the results of a detailed Geant 4 simulation of the experiment confirming the claim of low background in the experiment, as the independent TAC report recommended. In addition, a detailed design of the experimental setup (including electronics and DAQ) should be presented to assess the viability of the measurement.

Summary: The presented physics case is timely and extremely compelling. However, the PAC has identified a number of critical items especially in the experimental method, which should be addressed to make sure that no hidden technical problems will jeopardize a successful experimental campaign. The PAC strongly encourages the collaboration to address these items in the future.

Strangeness form factors

Method from R.McKeown and D.Beck, 1989

Polarized electron beam elastic e-p scattering

$$
\begin{aligned}
& A_{P V}=-\frac{G_{F} Q^{2}}{4 \pi \alpha \sqrt{2}} \cdot\left[\left(1-4 \sin ^{2} \theta_{W}\right)-\frac{\epsilon G_{E}^{p} G_{E}^{n}+\tau G_{M}^{p} G_{M}^{n}}{\epsilon\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}}-\frac{\epsilon G_{E}^{p} \overleftarrow{G_{E}^{s}}+\tau G_{M}^{p} \overline{G_{M}^{s}}}{\epsilon\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}}\right. \\
& \left.+\epsilon^{\prime}\left(1-4 \sin ^{2} \theta_{W}\right) \frac{G_{M}^{p} G_{A}^{Z p}}{\epsilon\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}}\right]
\end{aligned}
$$

Proton strangeness Form Factors via parity non-conserving elastic electron scattering

PVES "counting" experiments

Mainz A4

Total energy of electron

G0

Time of flight of recoil proton

PVDIS-6

Calorimetry + Cerenkov PID

The nucleon electromagnetic form factors

Electromagnetic form factors

$$
\begin{gathered}
F_{i}^{p}=e_{u} F_{i}^{u}+e_{d} F_{i}^{d}+e_{s} F_{i}^{s}, \\
F_{i}^{n}=e_{u} F_{i}^{d}+e_{d} F_{i}^{u}+e_{s} F_{i}^{s}, \\
\int_{0}^{1} \mathrm{~d} x[s(x)-\bar{s}(x)]=0 \\
F_{1}^{s}(0)=0 \quad F_{2}^{s}(0)=\mu_{s}
\end{gathered}
$$

Q ${ }^{2}$ dependence of F2/F1

pQCD prediction for large Q^{2} :

$$
S \rightarrow Q^{2} F_{2} / F_{1}
$$

pQCD updated prediction:
$S \rightarrow\left[Q^{2} / \ln ^{2}\left(Q^{2} / \Lambda^{2}\right)\right] F_{2} / F_{1}$

Flavor separated contributions: The log scaling for the proton Form Factor ratio at few GeV^{2} is likely "accidental".

The lines for individual flavor are straight!

Q^{2} dependence of $Q^{4} F 1$

$$
\begin{gathered}
F_{1 p}=e_{u} F_{1}^{u}+e_{d} F_{1}^{d}+e_{s} F_{1}^{s} \\
F_{1 n}=e_{u} F_{1}^{d}+e_{d} F_{1}^{u}+e_{s} F_{1}^{s} \\
F_{1}^{u}=2 F_{1 p}+F_{1 n}-\frac{1}{3} F_{1}^{s}, \quad F_{1}^{d}=2 F_{1 n}+F_{1 p}-\frac{1}{3} F_{1}^{s}
\end{gathered}
$$

sFF data and projections

Expectations for the strangeness FF
G_{D} at $3 \mathrm{GeV}^{2}$ is 0.037
$G_{S} / G_{D} \sim 1$ is not excluded
J.Green etal, 2015

T.Hobbs \& J.Miller, 2018

Coincidence parity experiment

Beam of 6.6 GeV with scattered electron to 15.5 degrees. High resolution in large solid angle $\sim 42 \mathrm{msr}=>8 \mathrm{x}$ of HRS
The apparatus reuses components of two calorimeters from the SBS and NPS

Coincidence parity experiment

The projected rate of good elastic e-p events is 14 kHz Statistical raw accuracy is $\sim 5 \mathrm{ppm}$ in a 30 day run. Projected PV asymmetry estimated to be -150 ppm

Detector System

HCAL - hadron calorimeter

- Reassembled from detector elements from the SBS HCAL
- 288 blocks, each $15.5 \times 15.5 \times 100 \mathrm{~cm}^{3}$
- iron/scintillator sandwich with wavelength shifting fiber readout

ECAL - electron calorimeter

- Reassembled from detector elements from the NPS calorimeter
- 1000 blocks, each $2 \times 2 \times 20 \mathrm{~cm}^{3}$
- PbWO_{4} scintillator

Scintillator array

- Used for improved position resolution in front of HCAL
- Not used to form trigger
- 7200 blocks, each $3 \times 3 \times 10 \mathrm{~cm}^{3}$
- Lead shield in front (thickness to be optimized) to reduce photon load

Scheme of the vacuum chamber

3.5 m target shift downstream is due to space limitation on the SHMS side

Detectors

HCal, 288 15.5x15.5x $100 \mathrm{~cm}^{3}$

DAQ block diagram

Similar to operational HPS DAQ

HPS Trigger Hardware Upgrade

Projected asymmetry

1. Counting statistics 5 ppm
2. Beam polarization 85%
3. EMFFs
4. Axial FF
5. High order corrections
$\mathrm{A}_{\mathrm{PV}}=150 \mathrm{ppm}$ at $2.5 \mathrm{GeV}^{2}($ for $\mathrm{sFF}=0)$
$\mathrm{A}_{\mathrm{PV}}=$ prop. to $(0.075+0.542-0.0+0.038)$ axial

$$
\begin{gathered}
A_{P V}=-\frac{G_{F} Q^{2}}{4 \pi \alpha \sqrt{2}} \cdot\left[\left(1-4 \sin ^{2} \theta_{W}\right)-\frac{\epsilon G_{E}^{p} G_{E}^{n}+\tau G_{M}^{p} G_{M}^{n}}{\epsilon\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}}-\frac{\epsilon G_{E}^{p} G_{E}^{s}+\tau G_{M}^{p} G_{M}^{s}}{\epsilon\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}}\right. \\
\left.+\epsilon^{\prime}\left(1-4 \sin ^{2} \theta_{W}\right) \frac{G_{M}^{p} G_{A}^{Z p}}{\epsilon\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}}\right]
\end{gathered}
$$

$$
\mathrm{A}=-226 \mathrm{ppm} *\left\{0.66-\left(\mathrm{sFF} / \mathrm{G}_{\mathrm{D}}\right) / 9.9\right\}
$$

Rates and Statistical Precision

Beam and target: 60 uA on $10 \mathrm{~cm} \mathrm{LH} 2=>$ luminosity is $1.6 \times 10^{38} \mathrm{~cm}^{-2} / \mathrm{s}$ Total: 1.2 MHz proton, 220 kHz electron arm

On-line trigger: accidental rate $1.6 \mathrm{kHz}(40 \mathrm{~ns}), 37 \mathrm{kHz}$ elastic coincidence, $\sim 40 \mathrm{kHz}$ total coincidence trigger rate; Data volume $56 \mathrm{MB} / \mathrm{s}$

Off-line: e-p rate 14.2 kHz - production statistics! (4 ns, angular correlation cuts)

Real/Accidental ratio in final event sample is $>10^{3}$

Beam polarization 85\%

Counting statistics in 30 days $=>$ Raw asymmetry accuracy $\sim 5 \mathrm{ppm}$

$$
=>A_{P V}=-150+/-6.2 \mathrm{ppm}
$$

Electron and proton rates

Inelastic:
$\mathrm{E}_{\mathrm{e}}>4.5 \mathrm{GeV}$ rate is 220 kHz
$\mathrm{E}_{\mathrm{e}}>5.0 \mathrm{GeV}$ rate is 18 kHz
$\mathrm{E}_{\mathrm{e}}>5.2 \mathrm{GeV}$ rate is 2.8 kHz

Shape of HACL amplitude for 2.4 GeV protons

Delta contribution via electro-production

Pion-production background rate calculation

Online:
Electron arm single rate for $\mathrm{E}_{\mathrm{e}^{\prime}}>5 \mathrm{GeV}$ is $\sim 18 \mathrm{kHz}$
about 50% enters HCAL acceptance as coincidence, so $\sim 10 \mathrm{kHz}$

Offline:
electron arm single rate for $\mathrm{E}>5.2 \mathrm{GeV}$ is $\sim 3 \mathrm{kHz}$
high angular resolution excludes $>99 \%$

Projected result accuracy

Summary (per PAC50 proposal)

- After 10+ years since last sFF searches were performed a new experiment is proposed for much higher Q^{2}.
- Projected accuracy 0.27 of the Dipole value allows high sensitivity search for non-zero strange form factor.
- We request PAC approval of 35 days of beam time (60 uA on 10 cm long LH2 target).

