TCS Simulation: low momentum proton tracking

V. Tadevosyan

CPS Science: Timelike Compton Scattering

- Determine quantitatively if low energy protons can be measured after the polarized target high magnetic field do they leave the field? Do they leave the scattering chamber?
 - Make a 3D simulation and for selected bins show the trajectories of proton (and electron) and where they hit the detector in t, phi, etc., in particular at low momentum
 - Check the simple example of phi plot correlations: plot phi=0/theta=0, phi=0/theta=45, phi=0/theta=90deg, etc., and see if the correlation, and where the detector is hit, changes
- Show how one can select exclusive TCS events with photon beam energy unknown and detection
 of positron, electron and proton in area of large background.
- Show how certain particle backgrounds can be reduced in the data analysis (π⁰, γ, π^{+/-})
- Quantify the unique impact of TCS with polarized target on hadron imaging studies
- Show how TCS with polarized target complements other approved Compton Scattering experiments (DVCS, TCS, WACS) at JLab.

Exempt from CPS Action Items 2020

<u>Setup</u>

- CPS photon beam
- JLab/UVA NH₃
 (g2p) polarized
 target (rotated 90°)
- Triple-GEMs for e^+ , e^- , p tracking
- Hodoscopes for p detection/PID
- $PbWO_4$ calorimeters for e^+ , e^- detection/PID

Conventions

Note: detectors positioned at $\theta_X = \pm 10.034^\circ$, $\theta_Y = \pm 14.042^\circ$; layer 1 GEM trackers at 120 cm from target.

Choose proton momentum 400 MeV/c

- Choose $\theta_{x} = 10^{\circ}$ at target (pointing to quarters 1, 4)
- Increment θ_{y} in steps of 5°
- Sample 10k events at origin for each (θ_x, θ_y)
- Look for hits in layer 1 trackers:

Track ID == 1

→ original track

 $_{\circ}$ $E_{DEP} > 0 \text{ eV}$

 \rightarrow signal

<u>Sampling</u>

Note: for
$$P=0.4~GeV/c$$
, $\int Bdl=0.7~T\cdot m \Rightarrow \Delta\theta=0.3\frac{\int Bdl}{P}=0.53rad=30^\circ$

Hits

400 MeV/c proton hits in layer 1 trackers

Note: tracks with $\theta_{Y} = 30^{\circ}$ are lost in between quarters 1 and 4.

Tracks at vertex

- Deflection within R<20cm
- Track wiggling due to field flip

Hit pattern

Tracks with $\theta_v = 15^{\circ}$ at vertex:

- Hit spot size $\sigma \sim 1.5cm$
- Noticeable fraction of wide scatted tracks
- Fraction of hits within R < 4.5cm -- 94.5%

Conclusions

- Significant fraction of 400 GeV/c protons escape target and scattering chamber
- Hit pattern at layer 1 trackers correlates with vertical tracks' deflection angle at vertex
- Noticeable effect from particle interaction with matter on pass:
 - Hit spot of size $\sigma \sim 1.5cm$
 - \circ Fraction of wide scattered events $\sim 5\%$

Back up

Hit pattern

Setup

CPS beam

- 2 mm rastered collinear bremsstrahlung photon beam , E_{MAX} = 11 GeV
- Intensity: 1.5×10^{12} equivalent $y/s \rightarrow 2 \times 10^{13}$ y/s in [10 MeV, 11 GeV] range

Target assembly

- Scattering Chamber with thin Al windows
- 3 cm target cell, with ammonia beds in LHe
- Magnet coils, LHe and LN Shields
- Chamber & magnet rotated 90°
- Magnetic field map, 5T at center

Trackers

- Like COMPASS triple-GEM detectors (F.Sauli, NIMA 805 (2016) 2-24)
- Working gas: 70% Ar, 30% CO₂, $\rho = 1.7 \text{ mg/cm}^3$
- Hit signal: energy deposition in the DRIFT region

Deflections of accepted tracks in the target magnetic field (BdL~0.7 Tm) relative to directions at target (from *old* simulations, w/ tracker hodoscopes, w/o GEM trackers).