TCS Simulation:
 low momentum proton tracking

V. Tadevosyan

04/16/2020

CPS Science: Timelike Compton Scattering

- Determine quantitatively if low energy protons can be measured after the polarized target high magnetic field - do they leave the field? Do they leave the scattering chamber?
- Make a 3D simulation and for selected bins show the trajectories of proton (and electron) and where they hit the detector in t , phi, etc., in particular at low momentum
- Check the simple example of phi plot correlations: plot phi $=0 /$ theta $=0$, phi $=0 /$ theta $=45$, phi $=0 /$ theta $=90 \mathrm{deg}$, etc., and see if the correlation, and where the detector is hit, changes
- Show how one can select exclusive TCS events with photon beam energy unknown and detection of positron, electron and proton in area of large background.
- Show how certain particle backgrounds can be reduced in the data analysis $\left(\pi^{0}, \gamma, \pi^{+/-}\right)$
- Quantify the unique impact of TCS with polarized target on hadron imaging studies
- Show how TCS with polarized target complements other approved Compton Scattering experiments (DVCS, TCS, WACS) at JLab.

Exempt from CPS Action Items 2020

Setup

- CPS photon beam
- JLab/UVA NH_{3} (g2p) polarized target (rotated 90°)
- Triple-GEMs for e^{+}, e^{-}, p tracking
- Hodoscopes for p detection/PID
- PbWO_{4} calorimeters for e^{+}, e^{-} detection/PID

Conventions

Beam direction

Note: detectors positioned at $\theta_{X}= \pm 10.034^{\circ}, \theta_{Y}= \pm 14.042^{\circ}$; layer 1 GEM trackers at 120 cm from target.

Sampling

- Choose proton momentum $400 \mathrm{MeV} / \mathrm{c}$

- Sample 10k events at origin for each $\left(\theta_{X}, \theta_{Y}\right)$
- Look for hits in layer 1 trackers:
- PID(track) $==$ PID(vertex) \rightarrow proton
- Track ID $==1 \quad \rightarrow$ original track
- $E_{\text {DEP }}>0 \mathrm{eV}$
\rightarrow signal

Note: for $P=0.4 \mathrm{GeV} / c, \int B d l=0.7 T \cdot m \Rightarrow \Delta \theta=0.3 \frac{\int B d l}{P}=0.53 \mathrm{rad}=30^{\circ}$

Hits

$400 \mathrm{MeV} / \mathrm{c}$ proton hits in layer 1 trackers

Note: tracks with $\theta_{\gamma}=30^{\circ}$ are lost in between quarters 1 and 4.

$$
\text { Tracks with } \theta_{Y}=15^{\circ} \text { at vertex }
$$

- Deflection within $\mathrm{R}<20 \mathrm{~cm}$
- Track wiggling due to field flip

Hit pattern

Layer 1 Tracker 4

Conclusions

- Significant fraction of $400 \mathrm{GeV} / \mathrm{c}$ protons escape target and scattering chamber
- Hit pattern at layer 1 trackers correlates with vertical tracks' deflection angle at vertex
- Noticeable effect from particle interaction with matter on pass:
- Hit spot of size $\sigma \sim 1.5 \mathrm{~cm}$
- Fraction of wide scattered events $\sim 5 \%$

Back up

Hit pattern

Layer 1 Tracker 4

CPS beam

- 2 mm rastered collinear bremsstrahlung photon beam , $\mathrm{E}_{\mathrm{MAX}}=11 \mathrm{GeV}$
- Intensity: 1.5×10^{12} equivalent $\mathrm{\gamma} / \mathrm{s} \rightarrow 2 \times 10^{13} \mathrm{\gamma} / \mathrm{s}$ in [10 $\mathrm{MeV}, 11 \mathrm{GeV}$] range

Target assembly

- Scattering Chamber with thin Al windows
- 3 cm target cell, with ammonia beds in LHe
- Magnet coils, LHe and LN Shields
- Chamber \& magnet rotated 90°
- Magnetic field map, 5T at center

Trackers

Deflections of accepted tracks in the target magnetic field (BdL 0.7 Tm) relative to directions at target (from old simulations, w/ tracker hodoscopes, w/o GEM trackers).

