

NPS Status

Aaron Brown and the Detector Support Group February 2, 2023

Contents

- Overview
- Control and Monitoring Systems
 - LabVIEW
 - Thermal Readback
 - EPICS Phoebus
 - High Voltage
 - Low Voltage
 - LED Screen
- Ansys Thermal Analysis (Steady-state and Fluent)
- Phoebus Alarm System Development
- Hardware Fabrication and Testing
- Conclusion

Overview

• NeXt Generation CAD system (NX12) model of NPS

6 C^{5A}

2/2/2023

Detector Support Group

3

LabVIEW Control and Monitoring System

LabVIEW screen

Thermal Readback

Thermal readback Phoebus screen tested and debugged
 – Screens uploaded to *cdaql3* and to <u>Github</u>

C CS-Studio (Phoebus) - 🗆 🗙							C CS-Studio (Phoebus) -							×					
CZ temps monitoring test ×									cz T controls test ×										
							100 %	-	•	• •	Front crystal zone				100 5	%	•	•	• •
Front Crystal Zone Temperature Sensor Monitoring [°C]								temperature monitoring	Front Crystal Zone Temperature Sensor Controls										
Crystal	т	Avg	Out of high	limit low	Crystal	т	Avg	Out high	of limit low		Serveri	crystal	Alarr Iow	n limit high	crystal	Alarn Iow	n limit high		
0	20.1	20.1	\bigcirc	\bigcirc	540	22.6	22.6	\bigcirc				0	0	60	540	0	60]	
5	18.1	18.1	\bigcirc	\bigcirc	550	12.3	12.3					5	0	60	550	0	60		
10	17.5	17.5		\bigcirc	560	13.5	13.5			10	0	60	560	0	60				
15	19.4	19.4	\bigcirc	\bigcirc	570	16.5	16.5				15	-	60	570		60			
20	10.2	10.2	\bigcirc	\bigcirc	684	18.1	18.1			20	-	60	684		60				
25	12.8	12.8		\bigcirc	689	14.8	14.8					25	L o	00	699		00		
30	21.3	21.3		\bigcirc	694	21.3	21.3		 Fro	ont crystal zone	20		60	665		00			
35	20.3	20.3		\bigcirc	699	15.6	15.6			ter	mperature control screen	30	0	60	694	0	60		
180	20.7	20.7	\bigcirc	\bigcirc	704	18.3	18.3					35	0	60	699	0	60		
185	20.3	20.3	$\overline{\mathbf{O}}$	\bigcirc	709	19.8	19.8	$\overline{\mathbf{O}}$				180	0	60	704	0	60		
190	15.7	15.7	$\overline{\mathbf{O}}$	Ŏ	714	13.5	13.5	$\overline{\mathbf{O}}$				185	0	60	709	0	60		
195	11.6	11.6	Ŏ	Ŏ	719	21.0	21.0	Ŏ	Ŏ			190	0	60	714	0	60		
200	13.9	13.9	Ŏ	Ŏ	864	17.6	17.6	\mathbf{i}				195	0	60	719	0	60		
205	19.6	19.6	Ŏ	Ŏ	869	14.3	14.3	ŏ				200	0	60	864	0	60		
1	1		-	-											1		1 1		

Version of control and monitoring screens to be used for testing

Phoebus High Voltage Control and Monitoring

C CS-Studio@cdaql3	Row 35	00-35	01-35	02-35	03-35	04-35	05-35	06-35	07-35	08-35	09-35	10-35
Overview ×			Off		Off	On						
85 %	Voltage [V]	<hchv21:00:< td=""><td>1.13</td><td><hchv21:02:< td=""><td>1.33</td><td>0.63</td><td>0.60</td><td>1.06</td><td>1.51</td><td>0.00</td><td>1.15</td><td>2000.11</td></hchv21:02:<></td></hchv21:00:<>	1.13	<hchv21:02:< td=""><td>1.33</td><td>0.63</td><td>0.60</td><td>1.06</td><td>1.51</td><td>0.00</td><td>1.15</td><td>2000.11</td></hchv21:02:<>	1.33	0.63	0.60	1.06	1.51	0.00	1.15	2000.11
	Current [uA]	<hchv21:00:< td=""><td>-0.026</td><td><hchv21:02:< td=""><td>-0.010</td><td>-0.010</td><td>0.006</td><td>-0.030</td><td>-0.032</td><td>-0.082</td><td>-0.090</td><td>681.616</td></hchv21:02:<></td></hchv21:00:<>	-0.026	<hchv21:02:< td=""><td>-0.010</td><td>-0.010</td><td>0.006</td><td>-0.030</td><td>-0.032</td><td>-0.082</td><td>-0.090</td><td>681.616</td></hchv21:02:<>	-0.010	-0.010	0.006	-0.030	-0.032	-0.082	-0.090	681.616
	Pow 34	00-34	01-34	02-34	03-34	04-34	05-34	06-34	07-34	08-34	09-34	10-34
	1000 34		Off		Off	On						
		 hchv21:00:	1.01	<hc></hc> hchv21:02:	1.48	1 11	1.05	0.42	1.22	0.30	0.99	1999.97
	Voltage [V]	chchv21:00:	-0.202	<hchv21:02< td=""><td>0.000</td><td>-0.004</td><td>-0.024</td><td>-0.086</td><td>-0.090</td><td>-0.106</td><td>-0.078</td><td>682 598</td></hchv21:02<>	0.000	-0.004	-0.024	-0.086	-0.090	-0.106	-0.078	682 598
	Current [uA]	sherry21.00.	0.202	SHCHV21.02.	0.000	0.004	0.024	0.000	0.000	0.100	0.010	002.000
	Row 33	00-33	01-33	02-33	03-33	04-33	05-33	06-33	07-33	08-33	09-33	10-33
			Off		Off	On						
	Voltage [V]	<hchv21:00:< td=""><td>1.26</td><td><hchv21:02:< td=""><td>1.40</td><td>0.32</td><td>0.44</td><td>0.00</td><td>1.07</td><td>1.63</td><td>0.85</td><td>2000.19</td></hchv21:02:<></td></hchv21:00:<>	1.26	<hchv21:02:< td=""><td>1.40</td><td>0.32</td><td>0.44</td><td>0.00</td><td>1.07</td><td>1.63</td><td>0.85</td><td>2000.19</td></hchv21:02:<>	1.40	0.32	0.44	0.00	1.07	1.63	0.85	2000.19
	Current [uA]	<hchv21:00:< td=""><td>-0.130</td><td><hchv21:02:< td=""><td>-0.006</td><td>-0.010</td><td>-0.028</td><td>-0.042</td><td>0.018</td><td>-0.074</td><td>-0.024</td><td>682 190</td></hchv21:02:<></td></hchv21:00:<>	-0.130	<hchv21:02:< td=""><td>-0.006</td><td>-0.010</td><td>-0.028</td><td>-0.042</td><td>0.018</td><td>-0.074</td><td>-0.024</td><td>682 190</td></hchv21:02:<>	-0.006	-0.010	-0.028	-0.042	0.018	-0.074	-0.024	682 190
	Pow 32	00-32	01-32	02-32	03-32	04-32	05-32	06-32	07-32	08-32	09-32	10-32
	NOW 32		Off		Off	On						
		<hchv21:00:< td=""><td>1.07</td><td><hchv21.02< td=""><td>1.39</td><td>1.26</td><td>0.88</td><td>0.70</td><td>1.02</td><td>0.71</td><td>0.00</td><td>1999 99</td></hchv21.02<></td></hchv21:00:<>	1.07	<hchv21.02< td=""><td>1.39</td><td>1.26</td><td>0.88</td><td>0.70</td><td>1.02</td><td>0.71</td><td>0.00</td><td>1999 99</td></hchv21.02<>	1.39	1.26	0.88	0.70	1.02	0.71	0.00	1999 99
	Voltage [V]	<hchv21:00:< td=""><td>-0.038</td><td><hchv21:02< td=""><td>0.000</td><td>-0.004</td><td>-0.010</td><td>-0.050</td><td>-0.044</td><td>-0.114</td><td>-0.036</td><td>682 918</td></hchv21:02<></td></hchv21:00:<>	-0.038	<hchv21:02< td=""><td>0.000</td><td>-0.004</td><td>-0.010</td><td>-0.050</td><td>-0.044</td><td>-0.114</td><td>-0.036</td><td>682 918</td></hchv21:02<>	0.000	-0.004	-0.010	-0.050	-0.044	-0.114	-0.036	682 918
	Current [uA]	SHCHV21.00.	0.000	SHCHV21.02.	0.000	0.004	0.010	0.050	0.044	0.114	0.000	002.510
	Row 31	00-31	01-31	02-31	03-31	04-31	05-31	06-31	07-31	08-31	09-31	10-01
			Off		Off	On						
	Voltage [V]	<hchv21:00:< td=""><td>0.49</td><td><hchv21:02:< td=""><td>0.79</td><td>0.17</td><td>0.00</td><td>1.00</td><td>1.56</td><td>0.84</td><td>0.00</td><td>1999.98</td></hchv21:02:<></td></hchv21:00:<>	0.49	<hchv21:02:< td=""><td>0.79</td><td>0.17</td><td>0.00</td><td>1.00</td><td>1.56</td><td>0.84</td><td>0.00</td><td>1999.98</td></hchv21:02:<>	0.79	0.17	0.00	1.00	1.56	0.84	0.00	1999.98
	Current [uA]	<hchv21:00:< td=""><td>-0.098</td><td><hchv21:02:< td=""><td>0.002</td><td>-0.002</td><td>-0.006</td><td>-0.082</td><td>-0.108</td><td>-0.178</td><td>-0.050</td><td>683.618</td></hchv21:02:<></td></hchv21:00:<>	-0.098	<hchv21:02:< td=""><td>0.002</td><td>-0.002</td><td>-0.006</td><td>-0.082</td><td>-0.108</td><td>-0.178</td><td>-0.050</td><td>683.618</td></hchv21:02:<>	0.002	-0.002	-0.006	-0.082	-0.108	-0.178	-0.050	683.618
	Row 30	00-30	01-30	02-30	03-30	04-30	05-30	06-30	07-30	08-30	09-30	10-30
	Now So		Off		Off	On						
		<hchv21.00< td=""><td>0.88</td><td><hchv21.02< td=""><td>1.02</td><td>0.31</td><td>0.29</td><td>1.25</td><td>1.02</td><td>0.60</td><td>0.89</td><td>2000.08</td></hchv21.02<></td></hchv21.00<>	0.88	<hchv21.02< td=""><td>1.02</td><td>0.31</td><td>0.29</td><td>1.25</td><td>1.02</td><td>0.60</td><td>0.89</td><td>2000.08</td></hchv21.02<>	1.02	0.31	0.29	1.25	1.02	0.60	0.89	2000.08
	Voltage [V]	<hchv21.00< td=""><td>-0.066</td><td><hchv21.02< td=""><td>-0.016</td><td>-0.018</td><td>-0.030</td><td>-0.054</td><td>-0.060</td><td>-0.080</td><td>-0.100</td><td>684 722</td></hchv21.02<></td></hchv21.00<>	-0.066	<hchv21.02< td=""><td>-0.016</td><td>-0.018</td><td>-0.030</td><td>-0.054</td><td>-0.060</td><td>-0.080</td><td>-0.100</td><td>684 722</td></hchv21.02<>	-0.016	-0.018	-0.030	-0.054	-0.060	-0.080	-0.100	684 722
	Current [uA]				0.010							
	Row 29	00-29	01-29	02-29	03-29	04-29	05-29	06-29	07-29	08-29	09-29	10-29
			Ott		Off	Ott	Off	Off	Off	Ott	Ott	On
	Voltage [V]	<hchv21:00:< td=""><td>0.00</td><td><hchv21:02:< td=""><td>1.36</td><td>0.00</td><td>0.00</td><td>1.17</td><td>1.31</td><td>0.82</td><td>1.04</td><td>1999.98</td></hchv21:02:<></td></hchv21:00:<>	0.00	<hchv21:02:< td=""><td>1.36</td><td>0.00</td><td>0.00</td><td>1.17</td><td>1.31</td><td>0.82</td><td>1.04</td><td>1999.98</td></hchv21:02:<>	1.36	0.00	0.00	1.17	1.31	0.82	1.04	1999.98
	Current [uA]	<hchv21:00:< td=""><td>-0.056</td><td><hchv21:02:< td=""><td>0.000</td><td>0.000</td><td>0.006</td><td>-0.052</td><td>-0.106</td><td>-0.104</td><td>-0.062</td><td>684.218</td></hchv21:02:<></td></hchv21:00:<>	-0.056	<hchv21:02:< td=""><td>0.000</td><td>0.000</td><td>0.006</td><td>-0.052</td><td>-0.106</td><td>-0.104</td><td>-0.062</td><td>684.218</td></hchv21:02:<>	0.000	0.000	0.006	-0.052	-0.106	-0.104	-0.062	684.218
	Row 28	00-28	01-28	02-28	03-28	04-28	05-28	06-28	07-28	08-28	09-28	10-28
			Off		Off	On						
	Voltage [V]	<hchv21:00:< td=""><td>1.10</td><td><hchv21:02:< td=""><td>1.56</td><td>0.75</td><td>0.02</td><td>0.00</td><td>1.07</td><td>0.74</td><td>1.03</td><td>2000.13</td></hchv21:02:<></td></hchv21:00:<>	1.10	<hchv21:02:< td=""><td>1.56</td><td>0.75</td><td>0.02</td><td>0.00</td><td>1.07</td><td>0.74</td><td>1.03</td><td>2000.13</td></hchv21:02:<>	1.56	0.75	0.02	0.00	1.07	0.74	1.03	2000.13
	Current [uA]	<hchv21:00:< td=""><td>-0.076</td><td><hchv21:02:< td=""><td>-0.008</td><td>-0.010</td><td>-0.090</td><td>-0.060</td><td>0.002</td><td>-0.048</td><td>-0.058</td><td>682.246</td></hchv21:02:<></td></hchv21:00:<>	-0.076	<hchv21:02:< td=""><td>-0.008</td><td>-0.010</td><td>-0.090</td><td>-0.060</td><td>0.002</td><td>-0.048</td><td>-0.058</td><td>682.246</td></hchv21:02:<>	-0.008	-0.010	-0.090	-0.060	0.002	-0.048	-0.058	682.246
	Current [uA]	00.07	04.07	50.00	00.07	04.07	05.07	00.07	07.07	00.07	00.07	40.07
	Row 27	00-27	01-27	02-27	03-27	04-27	05-27	06-27	07-27	08-27	09-27	10-27
						On	On	On	On	On	On	
one	Voltage [V]	<hc><hchv21:00:< td=""><td>1.33</td><td><nchv21:02:< td=""><td>1.58</td><td>1.35</td><td>0.07</td><td>1.97</td><td>0.85</td><td>0.89</td><td>1.41</td><td>2000.08</td></nchv21:02:<></td></hchv21:00:<></hc>	1.33	<nchv21:02:< td=""><td>1.58</td><td>1.35</td><td>0.07</td><td>1.97</td><td>0.85</td><td>0.89</td><td>1.41</td><td>2000.08</td></nchv21:02:<>	1.58	1.35	0.07	1.97	0.85	0.89	1.41	2000.08
	Current [uA]	<hchv21:00:< td=""><td>0.042</td><td><nchv21:02:< td=""><td>-0.002</td><td>-0.004</td><td>0.054</td><td>0.022</td><td>0.030</td><td>-0.040</td><td>0.022</td><td>682.012</td></nchv21:02:<></td></hchv21:00:<>	0.042	<nchv21:02:< td=""><td>-0.002</td><td>-0.004</td><td>0.054</td><td>0.022</td><td>0.030</td><td>-0.040</td><td>0.022</td><td>682.012</td></nchv21:02:<>	-0.002	-0.004	0.054	0.022	0.030	-0.040	0.022	682.012

Overview screen – magenta cells indicate an unconnected channel

Screen shows readback voltage, readback current, and status LED

 Adding ability to set maximum voltage and current for individual channels

Phoebus Low Voltage Control and Monitoring

- Developed and tested IOC
 - EPICS Phoebus screen received data transmitted by the MPOD

				Voltage			Current	
Card	Channel	Power	Set	Readback	Difference	Set	Readback	Difference
0	0	Off	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<>	<hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<>	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<>	<hcnps< td=""></hcnps<>
	1	Off	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<>	<hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<>	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<>	<hcnps< td=""></hcnps<>
	2	Off	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<>	<hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<>	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<>	<hcnps< td=""></hcnps<>
	3	Off	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<>	<hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<>	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<>	<hcnps< td=""></hcnps<>
	4	Off	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<>	<hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<>	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<>	<hcnps< td=""></hcnps<>
	5	Off	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<>	<hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<>	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<>	<hcnps< td=""></hcnps<>
	6	Off	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<>	<hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<>	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<>	<hcnps< td=""></hcnps<>
	7	Off	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<>	<hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<>	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<>	<hcnps< td=""></hcnps<>
1	0	Off	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<>	<hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<>	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<>	<hcnps< td=""></hcnps<>
	1	Off	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<>	<hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<>	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<>	<hcnps< td=""></hcnps<>
	2	Off	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<>	<hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<>	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<>	<hcnps< td=""></hcnps<>
	3	Off	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<>	<hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<>	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<>	<hcnps< td=""></hcnps<>
	4	Off	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<>	<hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<>	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<>	<hcnps< td=""></hcnps<>
	5	Off	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<>	<hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<>	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<>	<hcnps< td=""></hcnps<>
	6	Off	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<>	<hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<>	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<>	<hcnps< td=""></hcnps<>
	7	Off	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<>	<hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<>	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<>	<hcnps< td=""></hcnps<>
2	0	Off	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<></td></hcnps<>	<hcnps< td=""><td><hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<></td></hcnps<>	<hcnps_< td=""><td><hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<></td></hcnps_<>	<hcnps< td=""><td><hcnps< td=""></hcnps<></td></hcnps<>	<hcnps< td=""></hcnps<>
	1	Off	<hcnns< td=""><td><hcnns< td=""><td><hcnns< td=""><td><hcnns< td=""><td><hcnns< td=""><td><hcnns< td=""></hcnns<></td></hcnns<></td></hcnns<></td></hcnns<></td></hcnns<></td></hcnns<>	<hcnns< td=""><td><hcnns< td=""><td><hcnns< td=""><td><hcnns< td=""><td><hcnns< td=""></hcnns<></td></hcnns<></td></hcnns<></td></hcnns<></td></hcnns<>	<hcnns< td=""><td><hcnns< td=""><td><hcnns< td=""><td><hcnns< td=""></hcnns<></td></hcnns<></td></hcnns<></td></hcnns<>	<hcnns< td=""><td><hcnns< td=""><td><hcnns< td=""></hcnns<></td></hcnns<></td></hcnns<>	<hcnns< td=""><td><hcnns< td=""></hcnns<></td></hcnns<>	<hcnns< td=""></hcnns<>

EPICS Phoebus low voltage control and monitoring screen

2/2/2023

LED Control Screen

- Control screen in development
 - LED control screen similar to high voltage control and monitoring screen

BLEACH PULSE	\$(h)
BLEACH PULSE Image: Constraint of the state of t	Power OFF Bleach Pulse
BLEACH PULSE Image: Constraint of the state of t	 Each cell is clickable and opens a pop-up screen to control individual LEDs Bleach mode is for recovering crystals from radiation damage Pulse mode is for calibration

2/2/2023

Ansys Thermal Analysis

Heat load of 0.3 W applied to the rear face (PMT end) of each crystal

Temperature distribution on front face of crystal

~15°C at front and ~13°C at rear; ΔT =2°C

 ΔT of crystals; ~128 crystals have $\Delta T > 1^{\circ}C$; light yield might be affected for crystals with $\Delta T > 2^{\circ}C$

~20°C at front face and ~20°C at rear face; $\Delta T{=}0^\circ C$

Isometric view of electronics zone temperature when four fans blow air at 3.33 m/s to the heat exchanger plates, which are at 10°C

Crystal temperatures; 575 crystals at ambient temp of 20°C

2/2/2023

Detector Support Group

9

Phoebus Alarm System Development

• Alarm system

- Monitors process variables for alarm conditions

• Alarm system user interface

Configures alarm settings and acknowledges alarms

- EPICS IOC user interface
 - Controls process variable generation and sets alarm limits
 - Test system process variables produced by random number generators
 - Communicates via channel access interface
 - Provides alarm summary, status overview, hierarchical tree, unacknowledged alarms, and acknowledged alarms

Hardware Fabrication

- Pre-shaped 602 foils for crystals
- Back-potted Radiall connector pins with Power 7718 Knot Filling Hot Melt Glue to prevent unseating of pins
- Tested cables before and after back-potting
- No voltage or current stability differences noticed

Hot Melt Glue

Back-potted connector

Keysight D-sub Extension Cables

Jefferson Lab

Noise Reduction Tests

- Implemented Faraday cage
- Fabricated antenna probe to locate source of noise

George and Aaron covering detector with aluminum foil

Conclusion

- DSG contributing to all phases of NPS
 - Control and monitoring in LabVIEW and EPICS Phoebus
 - Development of Phoebus Alarm System
 - Ansys thermal analysis
 - Fabrication and testing of hardware

THANK YOU!

