Advanced Technologies for Detector Readout in Nuclear and Particle Physics

ools for Discove

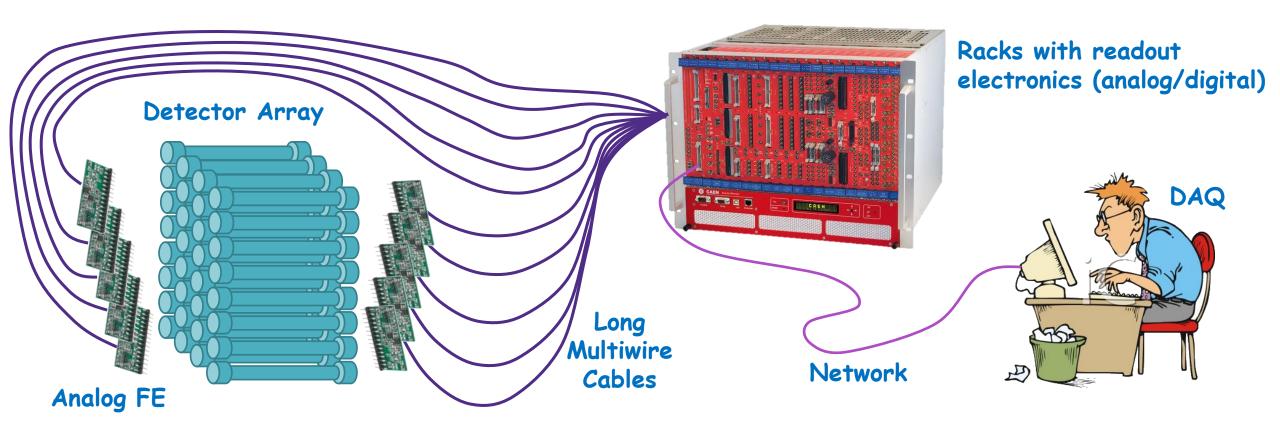
Electronic Instrumenta

Carlo Tintori (c.tintori@caen.it) Workshop VIII on Streaming Readout – Apr 28-30th, 2021

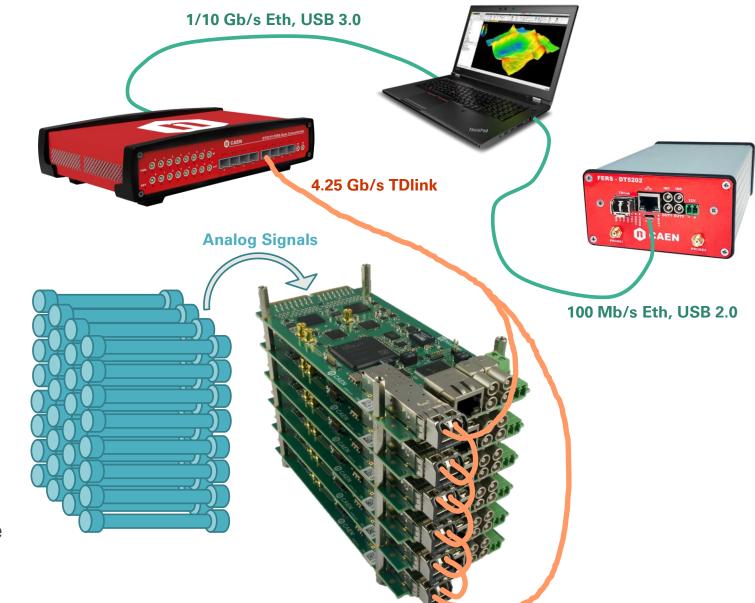
• FERS-5200 Readout Platform for large detector arrays

- General concept
- A5202/DT5202 with CITIROC ASIC
- Measurements with SiPMs
- DT5215 Concentrator Board
- Digitizers 2.0 : VX2740 and next steps
 - General concept
 - New generation overview
 - Software

FERS-5200



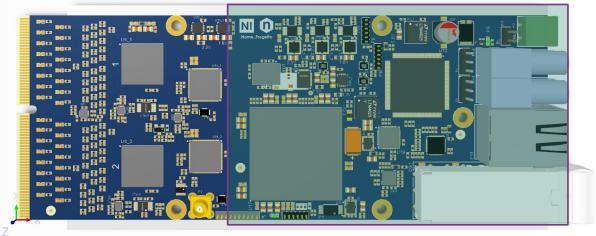
How to readout a gigantic detector?


The old way: rack electronics

- Front End Preamplifiers close to the detectors
- Long cables bring analog signals to readout electronics (ADC, TDC, etc.) in racks
- **PROBLEMS**: Signal attenuation, noise pick-up, ground loops, cost of cables, geometry constraints

The new way: FERS-5200

- Modular readout of large arrays of detectors
- **Compact** FERS units: front-end + digital (standalone)
- **TDlink**: 4.25 GB/s Optical link providing Readout, Slow Control, Synchronization
- Easy-scalability:
 1 FERS unit = 64/128 ch
 1 Concentrator = 8k/16k channels
- Stand Alone version for Evaluation => scale up to 10k/100k channels with same electronics

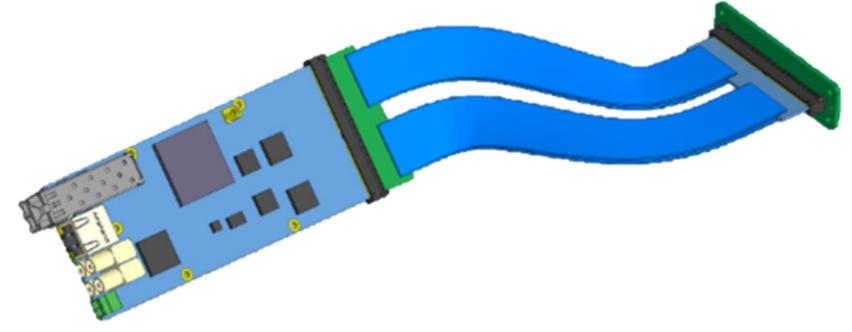


A flexible architecture for a wide range of potential applications:

- SiPM CURRENTLY AVAILABLE
- General purpose ps timing with **picoTDC** ASIC **COMING SOON**
- PMTs and MA-PMTs
- Gas Detector, wire chambers
- GEM
- Micromegas
- Silicon Strip Detectors
- Segmented HPGe detectors

Same Infrastructure, different Front Ends

<u>Quick integration of different ASICs</u>

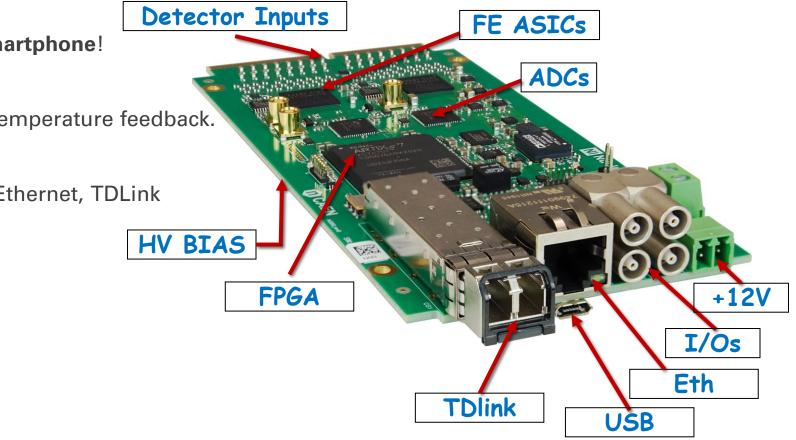

DETECTOR SPECIFIC COMMON INFRASTRUCTURE

Connectors and Cables

- Micro coaxial cable assembly: no significant signal degradation up to 2-3 m
- Same connector mating: no need of adapters
- Easy fitting of **geometrical constraints**

n

- Detached electronics simplifies the connection to **cold detectors**
- Edge connector: optimal fit for feed-through flanges

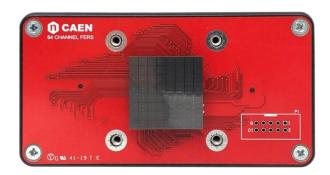


NEW A5202: 64 channel SiPM readout

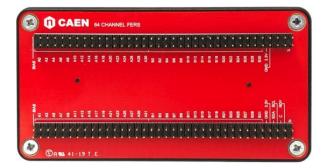
• Based on two ASICs **Citiroc 1A** (by Weeroc)

n

- A5202 is nearly the **size of your smartphone**!
- Embedded HV bias (20-85V) with temperature feedback.
- Different readout protocols: USB, Ethernet, TDLink

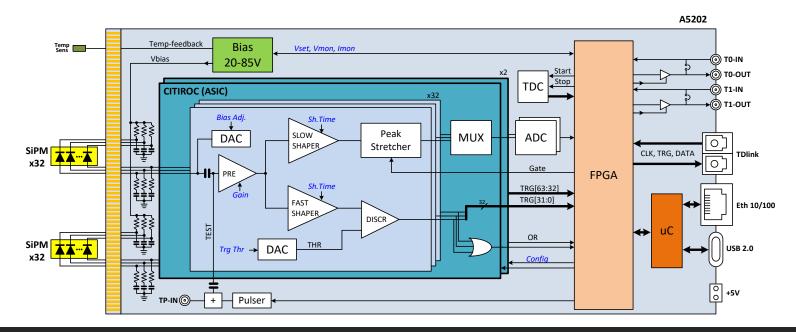


NEW DT5202: 64 channel SiPM readout


- Goes standalone on your desk via Ethernet/USB connection
- Ideal for prototyping phase

n

FRONT PANEL : EXCHANGABLE AND CUSTOMIZABLE



x5202: 64 channel SiPM readout

- Programmable gain and shaping time for High Res PHA (Multiplexed A/D, max Trg Rate = 100 Kcps)
- Individual discriminator thresholds: down to 1/3 p.e.

n

- Discriminator outputs for high counting rate (20 Mcps), Time stamping (0.5 ns) and ToT (low res PHA)
- Acquisition modes: photon counting, spectroscopy mode (PHA), timing mode (channel ID + Tstamp + ToT

x5202: acquisition modes

• Spectroscopy Mode (PHA):

- A/D conversion of the pulse height (preamp + shaper + peak hold + mux + 14 bit ADC)
- Common trigger (int. or ext.)
- Zero suppression with programmable thresholds
- Max trigger rate = 100 kHz (dead time = \sim 10 µs per trigger)
- **Counting Mode** (e.g. photon counting in SiPMs):
 - Counters fed by fast discriminator signals
 - Simultaneously latched at programmable time frames and saved to memory (MCS mode)
 - Counting rate up to ~20 Mcps/ch

x5202: acquisition modes

- **Timing Mode** (List of Tstamps and/or Time over Threshold):
 - Independent hit recording: channel ID + timing (0.5 ns resolution)
 - Common start or common stop (int/ext T-ref signal)
 - Gating mode
 - Optionally, **ToT** (0.5 ns resolution) provided for low resolution PHA: Charge Resolution = 1.5%
 - Max total hit rate = ~50 Mcps/board
 - **Spectroscopy and Timing mode** (List of PHA + Tstamps and/or ToT)

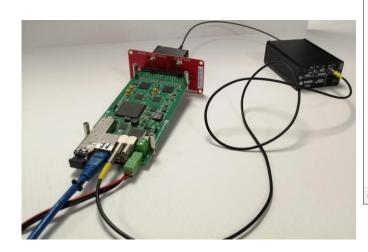
COMING SOON

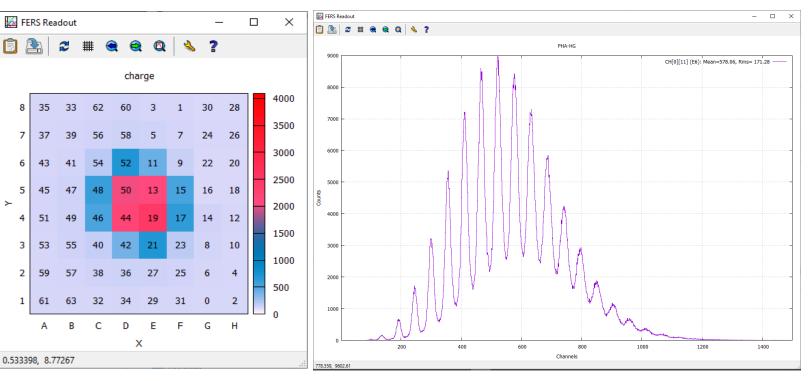
SiPM readout with x5202 - Janus Software

CAEN Janus software is free and available for A5202/DT5202 multi-board control and data acquisition:

- >GUI available for a quick and easy start
- >**Open-Source** for user customization
- >SiPM HV fully controllable by the software
- >Management of the acquisition parameters of all connected boards
- >Special runs (staircase, parameter sweeps) for SiPM characterization
- >Multi parametric Jobs and Runs with time or counts preset
- >Data saving of lists in .bin, .txt format
- Statistics and Spectra visualization

🐹 Janus								-		×		
File FWupgrade H	elp											
🕭 FERS	5-5200	Ver	JA 5202 - Ri	NU 1.1.3 - 2			Û	C/	\E	N		
		Ñ	٦. f	= {ĝ	÷ {;;;	£23		Run	# 1	\$		
Plot Type Spect HG V	Statistics Type ChTrg Rate							_	Apply			
Connect Log Stat	istics RunCtrl AcqMo	de Disc	r Spect	roscopy	Test-Pro	be HV_	bias Reg	s				
		B0 B1	B2 B3	B4 B5	B6 B7	B8 B9	B10 B11	B12 B13	B14 B1	15		
		0:7	8:15	16:23	24:31	32:39	40:47	48:55	56:63	3		
		CH 0	CH 1	CH 2	CH 3	CH 4	CH 5	CH 6	CH 7			
Gain Selection	BOTH ~											
HG Gain	sd		1	-	1	1	1	-	-	-0		
LG Gain	50			-								
ZS Low Threshold	0			-		-	-			-		
ZS High Threshold	0			-				-	-	-		
HG Shaping Time	25 ns 🗸											
LG Shaping Time	25 ns ~			FERS Ree	dout	-			-			(m) (
					2 # 🕷	e Q 🔌	?					
Hold Delay	100 ns			9000						РНА	на	
MUX Clock Period	300 ns							1				CH€0∰11mm= 171.
				8000 -					4			
Energy N Channels	8K ~							. 11				
ToA N Channels	4K ~			7000 -					11			
				6000 -								
									111	1		
				5000 -								
				Courts			1			11.		
				4000 -				111		IA		
nu O Dutt	-1			3000 -				1111	W.W.	111		
Status 📮 Ready to start Run #1							A II	VV	A A	VI	A	
				2000 -			11/11	V		V	11.	
						A	HIV	Ŷ			· W .	
				1000 -		. /\	IV "				N.	
						M	1				V	han
				0	~	200	4	0	600	Chan	800	1000 121
				778.539, 9602	JE1					chan	Tels .	


SiPM readout with A5202 – Energy Spectra


Example of energy spectra acquired with:

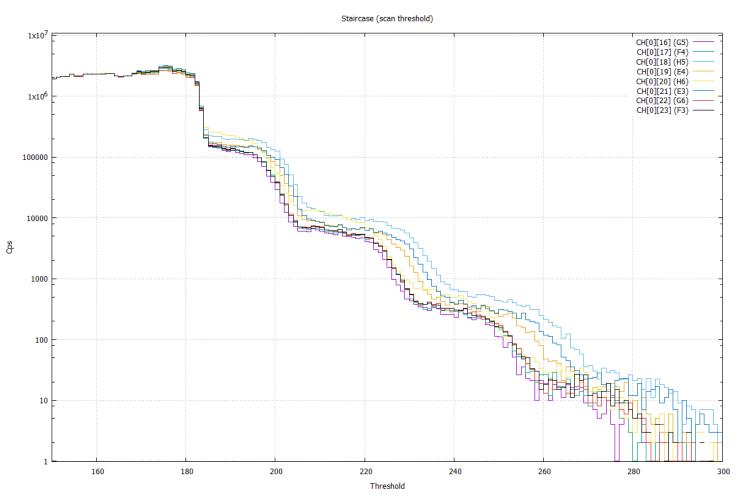
➢One A5202 board

n

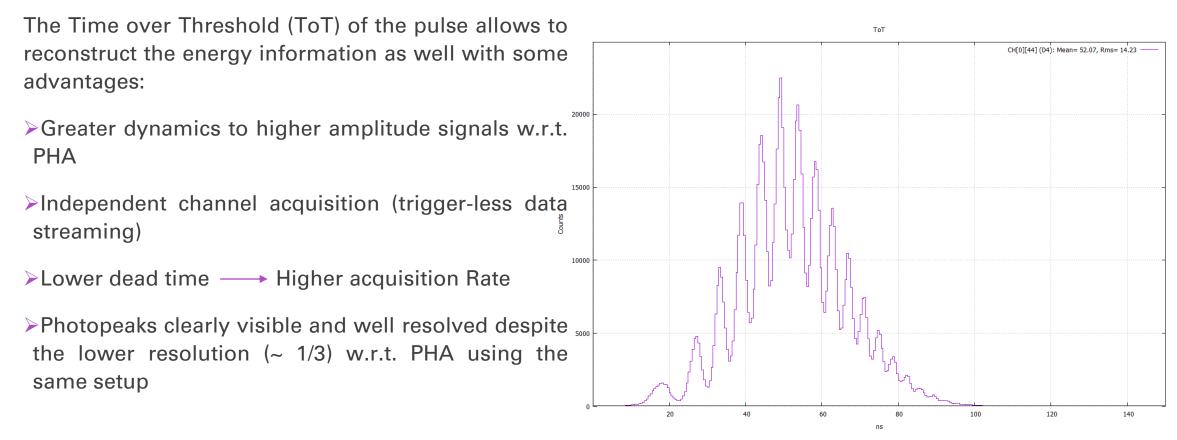
- SiPM Matrix Hamamatsu S13361-3050AE-08
- ≻SP5601 LED Driver

2D energy reconstruction for imaging applications

SiPM pulse height spectrum with the clearly visible photopeaks


SiPM readout with A5202 – Staircase

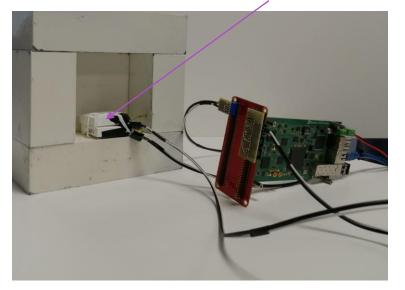
Example for the trend of the number of events triggered as a function of the threshold:


No LED Driver used — Dark Count Rate only

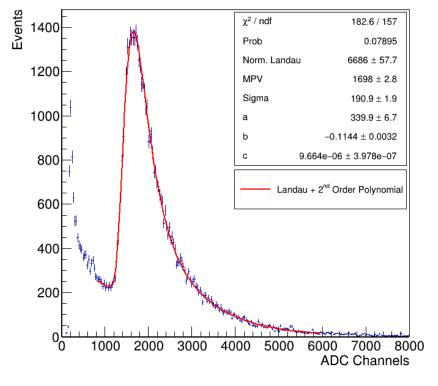
n

Each stair correspond to a different number of photoelectrons triggered

SiPM readout with A5202 – ToT

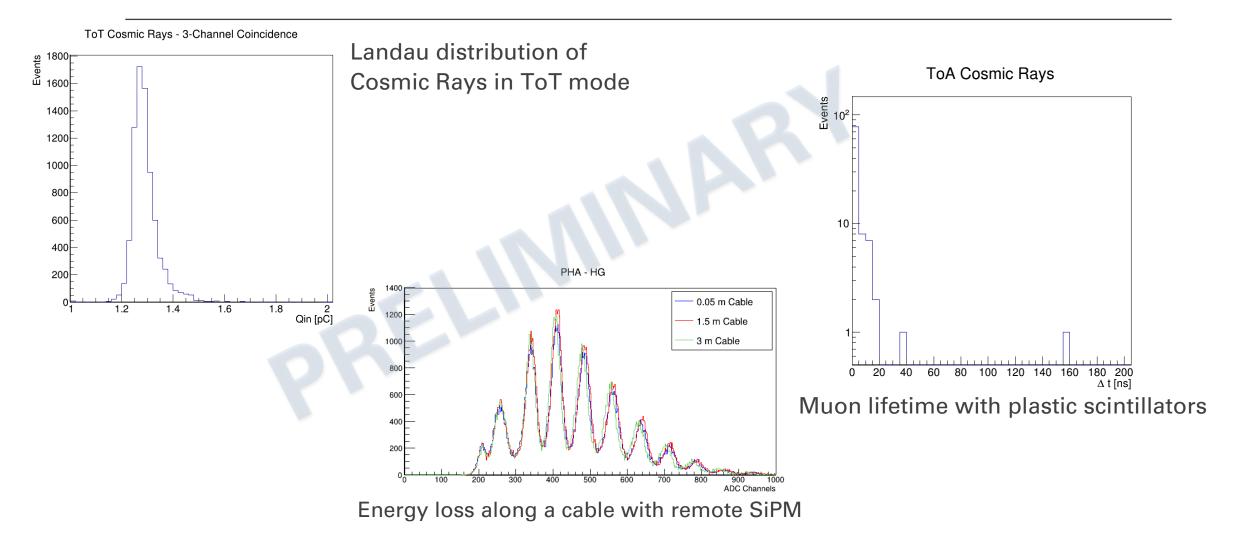


SiPM ToT spectrum with the clearly visible photopeaks


Measurement of Cosmic Ray Energy Loss

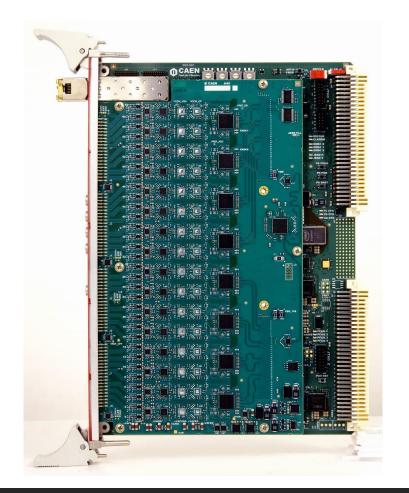
Preliminary measurements with one A5202 board. Setup:

Two 4.8 cm x 4.8 cm x 1 cm plastic scintillators, each one coupled to a Hamamatsu S13360-6050CS SiPM

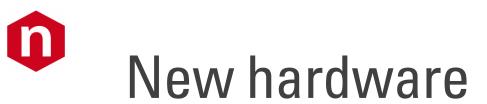

Two channel coincidence (implemented at firmware level) used as trigger for PHA acquisition

Pulse Height Cosmic Rays - 2-Channel Coincidence

Landau from relativistic muons loss of energy clearly visible


COMING SOON DT5215 – Concentrator Board

n

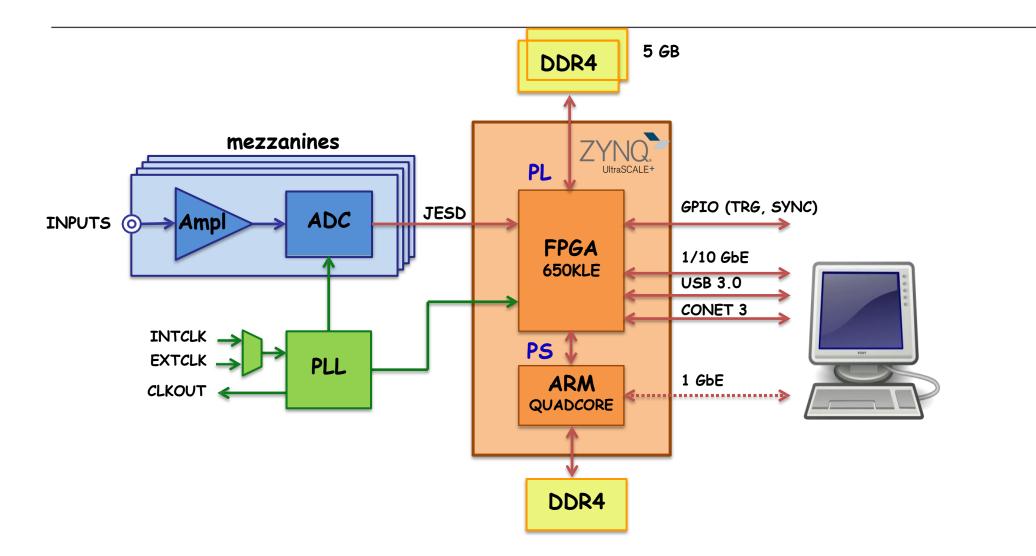


Digitizers 2.0

The new generation is coming ...

CAEN **always drives to develop** new hardware and to improve its products with new firmware and software tools.

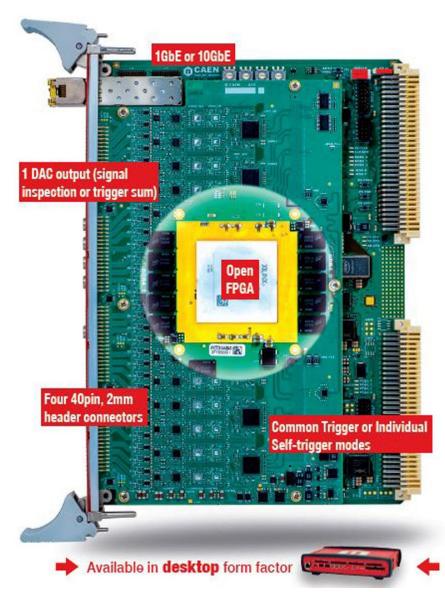
During the last years, a major project was pursued that is going to influence the years ahead: the **new digitizers**.


The new digitizers have better performance across the board:

• more channels for denser systems,

• faster communication links,

- from MB to GB on-board memory,
- improved FPGA with embedded ARM and OpenFPGA.


The architecture

VX2740: the first of a kind

64 channel, 125 MS/s, 16 - bit waveform digitizer

- High channel density spectroscopy
- Good fit for Neutrino and Dark Matter experiment
- Open FPGA: SCI-Compiler tool for beginners (COMING SOON) or advanced firmware template
- Four 40-pin, 2 mm header connectors with DIFF or SE inputs
- 1 GbE, 10 GbE, USB 3.0 and CONET 2.0 (optional) connectivity
- Common Trigger (waveforms) or Individual Self-trigger modes
- DPP options: PHA, QDC, PSD, CFD
- Advanced Waveform Readout modes: ZLE, DAW
- DT2740, 64 channels in Desktop form factor (COMING SOON)

Model	# channels	MS/s	# bit	Applications			
x2740	64	125	16	64 MCAs for high channel density spectroscopy			
				Good fit for Neutrino and Dark Matter exp.			
x2745	64	125	16	Variable gain input stage			
Advanced version of x2740				Designed for Si detectors readout			
x2725/x2730	32	250/500	14	Medium-fast detectors			
				Sub-ns timing combined with high energy resolution			
				Optimal trade off between cost and performances			
x2751	16	1000	14	Ultra-fast detectors (diamond, MPCs, SiPMs) with ps timing applications			
				Potential upgrade to higher sampling rate			
x2724	32	125	16	Spectroscopy & MCA			
				Advanced Front-End (gain, shaping, AC/DC coupling)			
				Semiconductor detector (HPGe, Clover, SDD ,)			
				Typically connected to charge Sensitive Preamplifier			

Birdseye view – what's coming

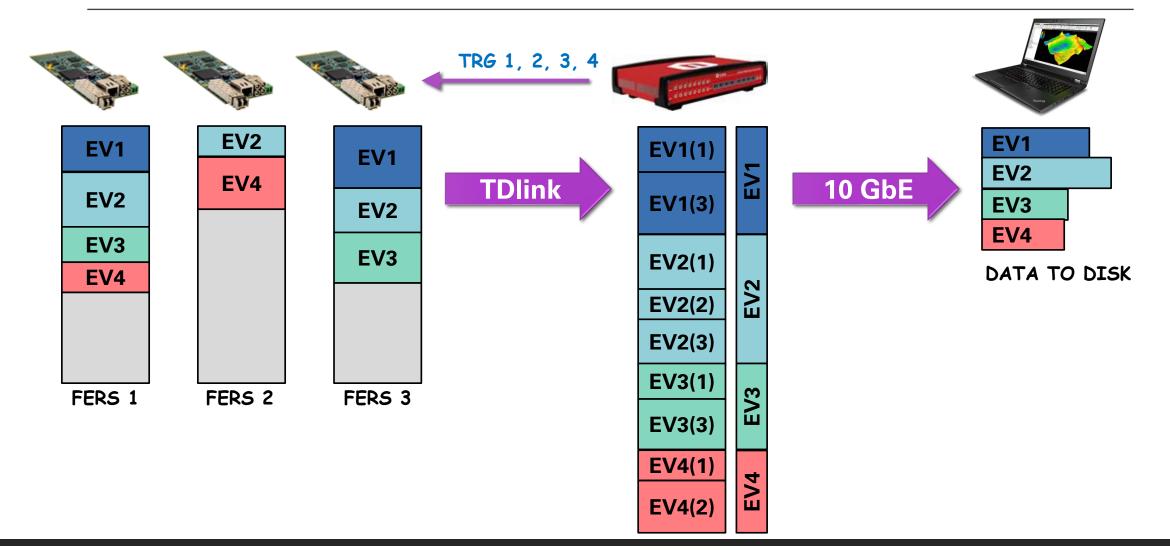
- >Multi-board management
- Simultaneous plot of waveform from up to 8 input channels
- Flexible and easy configuration channel and trigger settings
- >Import/Export of configuration presets

- >Support to all the CAEN Digitizer running DPP FW
- >Multi-board management
- >Simultaneous plot of waveform, energy, time, PSD, and TOF spectra
- ROI management and energy calibration
- >Selectable filters on energy, PSD and Time Correlation
- >Several options for data saving, including ROOT, .csv, .bin, .n42.

Thank you for your attention

Any question/curiosity?

Backup slides


A5202: readout modes

Common Trigger Mode

- FERS units: generate a trigger request (typically OR of channel discriminators)
- Data Concentrators: receive and combine requests from all units and generate the Global Trigger
- Event Building and data reduction takes place in the ARM processor of the Data Concentrator
- Trigger-less Mode (independent channel acquisition)
 - **FERS units**: each channel pushes data asynchronously, typically at different rates
 - No trigger and data correlation in HW. Events reconstruction in DAQ.
- ARM processor running Linux and local DDR memory available in Data Concentrator
- High throughput data transfer to host computers via 10 GbE or USB 3.0
- Users can run custom routines for data handling in the embedded ARM

In-built sparse event readout

n

REPRODUCTION, TRANSFER, DISTRIBUTION OF PART OR ALL OF THE CONTENTS IN THIS DOCUMENT IN ANY FORM WITHOUT PRIOR WRITTEN PERMISSION OF CAEN S.P.A. IS PROHIBITED.