Nuclear final-state interactions in tagged deuteron DIS at EIC

C. Weiss (JLab), 2018 EIC User Group Meeting, Catholic U., 31-Jul-2018

- Tagged deuteron DIS
 - DIS in controlled nuclear configurations
 - On-shell extrapolation

- Final-state interactions
 - Slow hadrons from nucleon fragmentation
 - Interactions with spectator
 - Momentum and angular dependence

- Extensions
 - Diffraction at $x \ll 0.1$
 - FSI in tagged DIS at $x \to 1$

EIC simulations: JLab 2014/15 LDRD
[Webpage]

Theory: Continuing effort
Light ions: Physics objectives

- **Neutron structure**

 Flavor decomposition of PDFs/GPDs/TMDs, singlet vs. non-singlet QCD evolution, polarized gluon

 Eliminate nuclear binding, non-nucleonic DOF!

- **Nucleon interactions in QCD**

 Nuclear modification of quark/gluon densities
 Short-range correlations, non-nucleonic DOF
 QCD origin of nuclear forces

 Associate modifications with interactions!

- **Coherent phenomena in QCD**

 Coherent interaction of high–energy probe with multiple nucleons, shadowing, saturation

 Identify coherent response!

 Common challenge: Multitude of possible nuclear configurations during high-energy process. Need to “control” configurations!
Light ions: Deuteron, spectator tagging

- Polarized deuteron
 - pn wave function simple, known well
 incl. light-front WF for high-energy procs
 - Neutron spin–polarized
 - Intrinsic Δ isobars suppressed by Isospin = 0
 $\langle \text{deuteron} \rangle = \langle pn \rangle + \epsilon \langle \Delta \Delta \rangle$

- Spectator nucleon tagging
 - Identifies active nucleon
 - Controls configuration through recoil momentum:
 Spatial size, $S \leftrightarrow D$ wave
 - Tagging in fixed-target experiments
 CLAS6/12 BONUS, recoil momenta $p = 70$-150 MeV

[Nucleus rest frame view]
Light ions: Deuteron, spectator tagging

- Spectator tagging with colliding beams

 Spectator nucleon moves forward with approx. 1/2 beam momentum

 Detection with forward detectors integrated in interaction region and beams optics
 LHC $pp/pA/AA$, Tevatron $p\bar{p}$, RHIC pp, ultraperipheral AA

- Advantages over fixed-target

 No target material, p_p (restframe) \rightarrow 0 possible

 Potentially full acceptance, good resolution

 Can be used with polarized deuteron

 Forward neutron detection possible

- Unique physics potential
Tagging: Cross section and observables

\[
\frac{d\sigma}{dx dQ^2 \left(\frac{d^3 p_p}{E_p} \right)} = [\text{flux}] \left[F_{Td}(x, Q^2; \alpha_p, p_{pT}) + \epsilon F_{Ld}(\ldots) \right]
\]

\[
+ \sqrt{2\epsilon(1+\epsilon)} \cos \phi_p F_{LT,d}(\ldots) + \epsilon \cos(2\phi_p) F_{TT,d}(\ldots)
\]

+ spin-dependent structures

- Conditional DIS cross section \(e + d \rightarrow e' + X + p \)

Proton recoil momentum \(p_p^+ = E_p + p_p^\perp, \quad p_{pT}, \)

light-front momentum fraction \(p_p^+ = \alpha_p p_d^+ / 2, \)

simply related to \(p_p(\text{restframe}) \)

Conditional structure functions

Special case of semi-inclusive DIS — target fragmentation

QCD factorization Trentadue, Veneziano 93; Collins 97

No assumptions re nuclear structure, \(A = \sum N, \) etc.
Tagging: Theoretical description

- **Light-front quantization**

 High-energy scattering probes nucleus at fixed light-front time \(x^+ = x^0 + x^3 = \text{const.} \)

 Deuteron LF wave function
 \[
 \langle pn|d \rangle = \Psi(\alpha_p, p_{pT})
 \]

 Matching nuclear ↔ nucleonic structure
 Frankfurt, Strikman 80’s

 Low-energy nuclear structure, cf. non-relativistic theory!

- **Composite description**

 Impulse approximation: DIS final state and spectator nucleon evolve independently

 Final-state interactions: Part of DIS final state interacts with spectator, transfers momentum
Tagging: Free neutron structure

- On-shell extrapolation

Proton momentum defines invariant
\[t - M_N^2 = -2|p_p|^2 + t_{\text{min}} \]
“neutron off-shellness”

Free neutron at pole \(t - M_N^2 = 0 \):
On-shell extrapolation

Eliminates nuclear binding effects and FSI Sargsian, Strikman 05

- Free neutron structure \(F_{2n} \)

Uncertainty mainly systematic
JLab LDRD: Detailed estimates

- Extension to spin structure \(g_{1n} \)

On-shell extrapolation of asymmetry

D-wave suppressed at \(p_p = 0 \):
Neutron 100% polarized
• Precise measurement of neutron spin structure

Wide kinematic range: Leading ↔ higher twist, nonsinglet ↔ singlet QCD evolution
Parton density fits: Flavor separation $\Delta u \leftrightarrow \Delta d$, gluon spin ΔG
Nonsinglet $g_{1p} - g_{1n}$ and Bjorken sum rule
• DIS final state can interact with spectator
 Changes recoil momentum distributions in tagging
 No effect on total cross section – closure

• Nucleon DIS final state has two components

 “Fast” \(E_h = O(\nu) \)
 hadrons formed outside nucleus
 interact weakly with spectators

 “Slow” \(E_h = O(\mu_{\text{had}}) \sim 1 \text{ GeV} \)
 formed inside nucleus
 interacts with hadronic cross section
 dominant source of FSI, cf. factorization

• FSI effects calculated \(x \sim 0.1–0.5 \)

 Experimental slow-hadron multiplicity distributions
 Hadron-nucleon low-energy scattering amplitudes
 Light-front QM: Deuteron \(pn \) wave function, rescattering process

Strikman, CW, PRC97 (2018) 035209
Cornell, EMC, HERA
Frankfurt, Strikman 81
FSI: Slow hadrons from nucleon fragmentation

- Kinematic variables

\[\zeta_h, \mathbf{p}_{hT} \quad \text{hadron LC mom} \quad \zeta_h \leftrightarrow x_F \]

Slow hadrons in rest frame have \(\zeta_h \sim 1 \)

\(\zeta_h < 1 - x \) \quad \text{kinematic limit}

- Momentum distribution in rest frame

Cone opening in virtual photon direction

No backward movers if \(h = \text{nucleon} \)

- Experimental data

HERA \(x < 0.01 \): \(x_F \) distns of \(p, n \), scaling

Cornell \(x > 0.1 \): Momentum distns of \(p, \pi \)

Neutrino DIS data \(x \sim 0.1 \)

EIC should measure nucleon fragmentation!

Nucleon structure physics (fracture fnns), input for nuclear FSI
FSI: Momentum and angular dependence

Momentum and angular dependence in rest frame

- $p_p < 300$ MeV \quad $\text{IA} \times \text{FSI}$ interference, absorptive, weak angular dependence
- $p_p > 300$ MeV \quad $|\text{IA}|^2$, refractive, strong angular dependence

Similar dependence observed in quasi-elastic $e + d \rightarrow e' + n + p$
FSI: Effect on on-shell extrapolation

- FSI reduces IA cross section at $|t - M_N^2| \neq 0$ ($\lesssim 0.2 \text{ GeV}^2$)

- FSI vanishes at $t - M_N^2 \to 0$; on-shell extrapolation not affected

FSI: Large x

- FSI suppressed for $x \to 1$: Minimum momentum of “slow” hadrons grows

FSI in subasymptotic regime, higher-twist: Cosyn, Sargsian 2010+
• Diffraction in nucleon DIS at $x \ll 0.1$

Nucleon remains intact, recoils with $k \sim$ few 100 MeV (rest frame)

10-15% of events diffractive. Detailed studies at HERA: QCD factorization, diffractive PDFs

• Shadowing in deuteron DIS

Diffraction can happen on neutron or proton: QM interference

Reduction of cross section compared to IA — shadowing. Leading-twist effect.

Frankfurt, Strikman, Guzey 12. Great interest. Hints seen in J/ψ production in UPCs at LHC ALICE.

• Diffraction and shadowing in tagged DIS

Differential studies as function of recoil momentum!

Large FSI effects. Outgoing pn scattering state must be orthogonal to d bound state

Guzey, Strikman, CW 18
FSI: Diffraction at small x

\[R = \frac{d\sigma(\text{full})}{d\sigma(\text{IA})} \] as function of neutron p_{nT} for fixed proton p_{pT}

- Final-state interactions in diffractive tagged DIS $e + d \rightarrow e' + X + n + p$

Large FSI effects due to orthogonality

Shadowing effects also calculated; can be studied in selected kinematics

Guzey, Strikman, CW, in preparation

Other application: High-p_T deuteron breakup and gluonic structure of small-size pn configuration

Miller, Sievert, Venugopalan 17
FSI: Applications and extensions

- Tagged EMC effect
 What momenta/distances in NN interactions cause modification of partonic structure?
 Connection with NN short-range correlations?
 FSI theory essential

- Tagged polarized DIS
 FSI effects can be calculated using same techniques
 Spin dependence of slow-hadron distributions unknown – need experimental input

- Breakup of complex nuclei $A > 2$
 Could test isospin dependence and/or universality of bound nucleon structure
 $(A - 1)$ ground state recoil, e.g. 3He (e, e' d) X
 Ciofi, Kaptari, Scopetta 99; Kaptari et al. 2014
 Theoretically challenging, cf. experience with quasielastic breakup
 Needs input from 3-body Faddeev calculations for structure and breakup. Bochum-Krakow group.
Summary

- Deuteron and spectator tagging overcome main limiting factor of nuclear DIS: Control of nuclear configurations during high-energy process

 Free neutron structure from on-shell extrapolation
 JLab 2014/15 LDRD Project (C. Weiss et al.) [Webpage]

- FSI between spectator and slow hadrons produced in nucleon fragmentation

 Respects QCD factorization theorem for target fragmentation
 Modifies momentum distribution, preserves total cross section
 Vanishes at on-shell point
 Produces sizable effects for recoil momenta $p_p \sim$ few 100 MeV

- On-shell extrapolation feasible in presence of FSI

- FSI suppressed in tagged DIS at $x \rightarrow 1$

- Future applications: Neutron spin structure, tagged EMC effect, . . .