## Nuclear final-state interactions in tagged deuteron DIS at EIC

C. Weiss (JLab), 2018 EIC User Group Meeting, Catholic U., 31-Jul-2018



**EIC simulations:** JLab 2014/15 LDRD

W. Cosyn, V. Guzey, D. Higinbotham, Ch. Hyde, K. Park, P. Nadel-Turonski, M. Sargsian, M. Strikman, C. Weiss\* [Webpage]

Theory: Continuing effort

Strikman, Weiss, PRC97 (2018) 035209 [INSP] + in preparation

Tagged deuteron DIS

DIS in controled nuclear configurations

On-shell extrapolation

• Final-state interactions

Slow hadrons from nucleon fragmentation

Interactions with spectator

Momentum and angular dependence

Extensions

Diffraction at  $x \ll 0.1$ 

FSI in tagged DIS at  $x \to 1$ 

## Light ions: Physics objectives







[Nucleus rest frame view]

#### Neutron structure

Flavor decomposition of PDFs/GPDs/TMDs, singlet vs. non-singlet QCD evolution, polarized gluon

Eliminate nuclear binding, non-nucleonic DOF!

#### Nucleon interactions in QCD

Nuclear modification of quark/gluon densities Short-range correlations, non-nucleonic DOF QCD origin of nuclear forces

Associate modifications with interactions!

#### Coherent phenomena in QCD

Coherent interaction of high—energy probe with multiple nucleons, shadowing, saturation

Identify coherent response!

Common challenge: Multitude of possible nuclear configurations during high-energy process. Need to "control" configurations!

## Light ions: Deuteron, spectator tagging





pn wave function simple, known well incl. light-front WF for high-energy procs

Neutron spin-polarized

Intrinsic  $\Delta$  isobars suppressed by Isospin = 0  $|\text{deuteron}\rangle = |pn\rangle + \epsilon |\Delta\Delta\rangle$ 



Spectator nucleon tagging

Identifies active nucleon

Controls configuration through recoil momentum: Spatial size,  $S \leftrightarrow D$  wave

Tagging in fixed-target experiments CLAS6/12 BONUS, recoil momenta  $p=70\text{-}150~\mathrm{MeV}$ 

[Nucleus rest frame view]

## Light ions: Deuteron, spectator tagging



Spectator tagging with colliding beams

Spectator nucleon moves forward with approx. 1/2 beam momentum

Detection with forward detectors integrated in interaction region and beams optics LHC pp/pA/AA, Tevatron  $p\bar{p}$ , RHIC pp, ultraperipheral AA

Advantages over fixed-target

No target material,  $p_p(\text{restframe}) \to 0$  possible

Potentially full acceptance, good resolution

Can be used with polarized deuteron

Forward neutron detection possible

Unique physics potential

## Tagging: Cross section and observables



$$\begin{split} \frac{d\sigma}{dx dQ^2 \left(d^3 p_p / E_p\right)} &= \left[ \text{flux} \right] \left[ F_{Td}(x,Q^2;\pmb{\alpha}_p,p_{pT}) + \epsilon F_{Ld}(..) \right. \\ &+ \sqrt{2\epsilon(1+\epsilon)} \, \cos \phi_p F_{LT,d}(..) \, + \, \epsilon \, \cos(2\phi_p) F_{TT,d}(..) \\ &+ \, \text{spin-dependent structures} \, \right] \end{split}$$

• Conditional DIS cross section  $e + d \rightarrow e' + X + p$ 

Proton recoil momentum  $p_p^+ = E_p + p_p^z$ ,  $\boldsymbol{p}_{pT}$ , light-front momentum fraction  $p_p^+ = \alpha_p p_d^+/2$ , simply related to  $\boldsymbol{p}_p$  (restframe)

Conditional structure functions

Special case of semi-inclusive DIS — target fragmentation QCD factorization Trentadue, Veneziano 93; Collins 97

No assumptions re nuclear structure,  $A = \sum N$ , etc.

## Tagging: Theoretical description







#### Light-front quantization

High-energy scattering probes nucleus at fixed light-front time  $x^+ = x^0 + x^3 = \text{const.}$ 

Deuteron LF wave function  $\langle pn|d \rangle = \Psi(\alpha_p, {m p}_{pT})$ 

Matching nuclear ↔ nucleonic structure Frankfurt, Strikman 80's

Low-energy nuclear structure, cf. non-relativistic theory!

#### Composite description

Impulse approximation: DIS final state and spectator nucleon evolve independently

Final-state interactions: Part of DIS final state interacts with spectator, transfers momentum

## Tagging: Free neutron structure





#### On-shell extrapolation

Proton momentum defines invariant  $t-M_N^2=-2|\boldsymbol{p}_p|^2+t_{\min}$  "neutron off-shellness"

Free neutron at pole  $t-M_N^2=0$ : On-shell extrapolation

Eliminates nuclear binding effects and FSI Sargsian, Strikman 05

• Free neutron structure  $F_{2n}$ 

Uncertainty mainly systematic JLab LDRD: Detailed estimates

• Extension to spin structure  $g_{1n}$ 

On-shell extrapolation of asymmetry

D-wave suppressed at  $\boldsymbol{p}_p=0$ : Neutron 100% polarized

## Tagging: Neutron spin structure



$$A_{\parallel n} = \frac{\sigma(+-) - \sigma(++)}{\sigma(+-) + \sigma(++)}$$
 
$$= D \frac{g_1}{F_1} + \dots$$
 
$$D = \frac{y(2-y)}{2-2y+y^2}$$
 depolarization factor 
$$y = \frac{Q^2}{xs_{eN}}$$

Precise measurement of neutron spin structure

Wide kinematic range: Leading  $\leftrightarrow$  higher twist, nonsinglet  $\leftrightarrow$  singlet QCD evolution Parton density fits: Flavor separation  $\Delta u \leftrightarrow \Delta d$ , gluon spin  $\Delta G$ Nonsinglet  $g_{1p}-g_{1n}$  and Bjorken sum rule

## **FSI**: Physical picture



- DIS final state can interact with spectator
  - Changes recoil momentum distributions in tagging
  - No effect on total cross section closure

Nucleon DIS final state has two components

"Fast" 
$$E_h = O(\nu)$$

hadrons formed outside nucleus interact weakly with spectators

"Slow" 
$$E_h = O(\mu_{
m had}) \sim 1 \; {\sf GeV}$$

formed inside nucleus interacts with hadronic cross section dominant source of FSI, cf. factorization

• FSI effects calculated  $x \sim 0.1$ –0.5

Strikman, CW, PRC97 (2018) 035209

Experimental slow-hadron multiplicity distributions

Cornell, EMC, HERA

Hadron-nucleon low-energy scattering amplitudes

Light-front QM: Deuteron pn wave function, rescattering process

Frankfurt, Strikman 81

# $\begin{array}{c|c} & \downarrow & \\ \hline p_N^+ & \downarrow & \\ \hline N & \downarrow & \\ \hline J & \vdots & \\ h & \downarrow & \\ & \downarrow & \\ h & \downarrow & \\ & \downarrow & \\ h & \downarrow & \\$



#### Kinematic variables

 $\zeta_h, m{p}_{hT}$  hadron LC mom  $\zeta_h \leftrightarrow x_{
m F}$  Slow hadrons in rest frame have  $\zeta_h \sim 1$   $\zeta_h < 1-x$  kinematic limit

#### Momentum distribution in rest frame

Cone opening in virtual photon direction

No backward movers if h = nucleon

#### • Experimental data

HERA x < 0.01:  $x_{\rm F}$  distns of p,n, scaling Cornell x > 0.1: Momentum distns of  $p,\pi$  Neutrino DIS data  $x \sim 0.1$ 

EIC should measure nucleon fragmentation! Nucleon structure physics (fracture fns), input for nuclear FSI





Strikman, CW 18

• Momentum and angular dependence in rest frame

 $p_p <$  300 MeV

 $IA \times FSI$  interference, absorptive, weak angular dependence

 $p_p >$  300 MeV

 $|IA|^2$ , refractive, strong angular dependence

Similar dependence observed in quasi-elastic  $e+d \rightarrow e'+n+p$ 

## FSI: Effect on on-shell extrapolation



- FSI reduces IA cross section at  $|t M_N^2| \neq 0 \quad (\lesssim 0.2 \, {\rm GeV^2})$
- FSI vanishes at  $t M_N^2 \to 0$ ; on-shell extrapolation not affected

## **FSI**: Large x

• FSI suppressed for  $x \to 1$ : Minimum momentum of "slow" hadrons grows FSI in subasymptotic regime, higher-twist: Cosyn, Sargsian 2010+

### FSI: Diffraction at small x



• Diffraction in nucleon DIS at  $x \ll 0.1$ 

Nucleon remains intact, recoils with  $k \sim$  few 100 MeV (rest frame)

10-15% of events diffractive. Detailed studies at HERA: QCD factorization, diffractive PDFs

Shadowing in deuteron DIS

Diffraction can happen on neutron or proton: QM interference

Reduction of cross section compared to IA — shadowing. Leading-twist effect.

Frankfurt, Strikman, Guzey 12. Great interest. Hints seen in  $J/\psi$  production in UPCs at LHC ALICE.

Diffraction and shadowing in tagged DIS

Differential studies as function of recoil momentum!

Large FSI effects. Outgoing pn scattering state must be orthogonal to d bound state Guzey, Strikman, CW 18



$$R=rac{d\sigma({
m full})}{d\sigma({
m IA})}$$
 as function of neutron  $m p_{nT}$  for fixed proton  $m p_{pT}$ 

ullet Final-state interactions in diffractive tagged DIS e+d 
ightarrow e'+X+n+p Large FSI effects due to orthogonality

Shadowing effects also calculated; can be studied in selected kinematics Guzey, Strikman, CW, in preparation

Other application: High- $p_T$  deuteron breakup and gluonic structure of small-size pn configuration Miller, Sievert, Venugopalan 17

## **FSI: Applications and extensions**

#### Tagged EMC effect

What momenta/distances in NN interactions cause modification of partonic structure? Connection with NN short-range correlations?

FSI theory essential



#### Tagged polarized DIS

FSI effects can be calculated using same techniques

Spin dependence of slow-hadron distributions unknown - need experimental input

#### • Breakup of complex nuclei A>2

Could test isospin dependence and/or universality of bound nucleon structure

$$(A-1)$$
 ground state recoil, e.g. 3He (e, e'd) X Ciofi, Kaptari, Scopetta 99; Kaptari et al. 2014

Theoretically challenging, cf. experience with quasielastic breakup Needs input from 3-body Faddeev calculations for structure and breakup. Bochum-Krakow group.

Deuteron and spectator tagging overcome main limiting factor of nuclear DIS:
 Control of nuclear configurations during high-energy process

Free neutron structure from on-shell extrapolation JLab 2014/15 LDRD Project (C. Weiss et al.) [Webpage]

FSI between spectator and slow hadrons produced in nucleon fragmentation

Respects QCD factorization theorem for target fragmentation

Modifies momentum distribution, preserves total cross section

Vanishes at on-shell point

Produces sizable effects for recoil momenta  $p_p \sim$  few 100 MeV

- On-shell extrapolation feasible in presence of FSI
- ullet FSI suppressed in tagged DIS at x o 1
- Future applications: Neutron spin structure, tagged EMC effect, . . .