WACS experiment with NPS and SBS

Sergey Abrahamyan (YerPhI / UVA) Bogdan Wojtsekhowski (JLab)

NPS collaboration

Overview

- Physics motivation
- Key components of the experiment
- Kinematics and statistics
- Projected accuracy

FF-s, GPD-s and Polarization Observables

$$R_{V}(t) = \sum_{a} e_{a}^{2} \int_{-1}^{1} \frac{dx}{x} H^{a}(x,0,t)$$

$$R_{A}(t) = \sum_{a} e_{a}^{2} \int_{-1}^{1} \frac{dx}{x} sign(x) \hat{H}^{a}(x,0,t)$$

$$R_{T}(t) = \sum_{a} e_{a}^{2} \int_{-1}^{1} \frac{dx}{x} E^{a}(x,0,t)$$

$$K_{LL} \simeq K_{LL}^{KN} \frac{R_{A}}{R_{V}} \left[1 - \frac{t^{2}}{2\left(s^{2} + u^{2}\right)} \left(1 - \frac{R_{A}^{2}}{R_{V}^{2}} \right) \right]^{-1}$$

Kivel and Vanderhaeghen, NLO calculations

$$K_{LL}^{KN} = \frac{s^2 - u^2}{s^2 + u^2}$$

$$K_{LL} = \frac{\sigma_{\parallel}^{R} - \sigma_{\parallel}^{L}}{\sigma_{\parallel}^{R} + \sigma_{\parallel}^{L}} = \frac{K_{LL}^{KN}}{\pi} + \frac{\alpha_{s}}{\pi} C_{F} K_{LL}^{NLO}$$

Cross-section and scaling

Diehl/Kroll and Kivel/Vanderhaeghen predictions of cross-section t-dependance for different s values. Cross-section results from PRL-98 152001 (2007) show that n = 7.0 - 8.0, while pQCD predicts n = 6.

Physics Motivation

- Test of the handbag predictions to the <10% level is an important task</p>
- The K_{LL}/A_{LL} asymmetry is an observable of choice

6

NLO corrections are suppose to vary as 1/s (Kivel and Vanderhaeghen)

E99-114: s = 6.9, t = -4.0, u = -1.1E07-002: s = 7.8, t = -2.0, u = -4.0

New measurements at double s, t, u and wide θ_{CM} range are necessary to understand the mechanism of WACS.

Experimental Setup

γ-Source

Initial MC simulation shows acceptable background rate on SBS and NPS Detailed analysis of radiation level is in progress

Main Experimental Parameters

SBS				
Angle	25°			
Distance [cm]	371 (to detector)160 (to magnet)			
$\Delta\Omega$ [msr]	70			
бр [%]	$0.29 + 0.03 \cdot p[GeV]$			
δθ [mrad]	0.14 + 1.34/p[GeV]			
δφ [mrad]	0.09 + 0.59/p[GeV]			

Beam

1.2

8.8

0.45 - 0.78

Ι [μΑ]

 P_{γ}

 $E_e[GeV]$

 $E_{\gamma}[GeV] = 4-8$

NPS [60cm x 70cm]			
Angle	28°		
Distance [cm]	200		
$\Delta\Omega$ [msr]	105		
δp [%]	$3/\sqrt{E[GeV]}$		
δX [mm]	3		
δY [mm]	3		

NH ₃ target		
ρ [g/cm ³]	0.87	
L [cm]	3.0	
f _{packing}	0.6	
P _p	0.75	

NPS Collaboration Meeting	11/19/2014
---------------------------	------------

Key Features

- > Photon detector, NPS: E, x and y high resolution; 100 msr
- Proton detector, SBS: 70 msr solid angle (10x of universal spectrometer)
- Photon flux, local beam-dump: 10x of mixed beam
- Compact photon spot: ~2.0 mm by means of magnet-dump configuration.

Kinematic range

Detectors acceptance covers wide kinematic range in one setting.

Cross-Section
$$N_{RCS} = \frac{d\sigma}{dt} \frac{\left(E_{\gamma}^{'}\right)^{2}}{\pi} \cdot \Delta \Omega_{\gamma} f_{\gamma p} \cdot N_{p} \cdot N_{\gamma}$$
E99-114 Results

Kin	1	2	3	4
s (GeV ²)	9.4	11.0	13.0	15.0
-t (GeV ²)	4.0	4.9	5.8	6.5
E' _γ (GeV)	2.4	2.7	3.3	4.0

21.10-36

NPS Collaboration Meeting 11/19/2014

 $1.5 \cdot 10^{-36}$

 $0.6 \cdot 10^{-36}$

 $5.3 \cdot 10^{-36}$

 $t_0 = 3.6$

 $\frac{d\sigma}{dt}\Big|_{s_0=8.0} = 35 \cdot 10^{-36} \text{ cm}^{-2} \text{GeV}^{-2}$

 $\frac{d\sigma}{dt}\Big|_{s,t} = \frac{d\sigma}{dt}\Big|_{s_0,t_0} \cdot \left(\frac{s}{s_0}\right)^{3.5} \cdot \left(\frac{t}{t_0}\right)^{4.0}$

 $\left|\frac{do}{dt}\left(\text{GeV}^{-2}\text{cm}^{-2}\right)\right|$

Photon flux and number of protons

$$N_{RCS} = \frac{d\sigma}{dt} \frac{\left(E_{\gamma}^{'}\right)^{2}}{\pi} \cdot \Delta\Omega_{\gamma} f_{\gamma p} \cdot N_{p} \cdot N_{\gamma}$$

$$N_{p} = \frac{Z}{A} \cdot t \cdot f_{pack} \cdot N_{A}$$

$$N_{p} = 1.65 \cdot 10^{23}$$

$$N_{H_{3}} \text{ target}$$

$$t [g/cm^{2}] \quad 1.57$$

For 1.2 µA beam and 10% radiator

Kin	1	2	3	4
E _γ [GeV]	4 - 5	5-6	6-7	7 - 8
N_{γ} (per sec)	$1.5 \cdot 10^{11}$	$1.2 \cdot 10^{11}$	$1.1 \cdot 10^{11}$	$0.9 \cdot 10^{11}$

Solid angle

 $=\frac{d\sigma}{dt}\frac{\left(E_{\gamma}^{'}\right)^{2}}{\pi}\cdot\Delta\Omega_{\gamma}f_{\gamma p}\cdot N_{p}\cdot N_{\gamma}$ N_{RCS}

- NPS acceptance
- SBS acceptance (no field)
- SBS acceptance (with SBS and target fields)
- SBS acceptance (with SBS and target fields, NPS shifted to match)

$$N_{RCS} = \frac{d\sigma}{dt} \frac{\left(E_{\gamma}^{'}\right)^{2}}{\pi} \cdot \Delta \Omega_{\gamma} f_{\gamma p} \cdot N_{p} \cdot N_{\gamma}$$

$$\Delta \Omega_{\gamma} = 100 \text{ msr} \qquad N_p = 1.65 \cdot 10^{23}$$

Statistics

$$\Delta A_{LL} = \frac{1}{\sqrt{\frac{N_{RCS}}{D}}P_p P_{\gamma}}$$

Kinematic	1	2	3	4
s (GeV ²)	9.4	11.0	13.0	15.0
-t (GeV ²)	4.0	4.9	5.8	6.5
E' _γ (GeV)	2.4	2.7	3.3	4.0
$\frac{d\sigma}{dt}(GeV^{-2}cm^{-2})$	21.10-36	5.3·10 ⁻³⁶	$1.5 \cdot 10^{-36}$	0.6.10-36
$\mathbf{f}_{\mathbf{\gamma p}}$	0.21	0.43	0.49	0.45
N_{γ} (per sec)	$1.5 \cdot 10^{11}$	$1.2 \cdot 10^{11}$	$1.1 \cdot 10^{11}$	$0.9 \cdot 10^{11}$
N _{RCS} (per hour)	72	36	18	7.2
N _{RCS} (250 hours)	18000	9000	4500	1800

Proton and photon polarization

Dilution due to pion background

	Kin 1	Kin 2	Kin 3	Kin 4
D	3.1	3.8	4.0	3.9

Estimated statistics and A_{LL} uncertainties

$$\Delta A_{LL} = \frac{1}{\sqrt{\frac{N_{RCS}}{D}}P_p P_\gamma}$$

Kinematic 3 2 4 s (GeV²) 9.4 11.0 15.0 13.0 -t (GeV²) 4.04.9 5.8 6.5 P_v 0.52 0.72 0.77 0.63 D 3.1 3.8 4.03.9 N_{RCS} (250 hours) 18000 9000 4500 1800 ΔA_{LL} 0.034 0.043 0.055 0.081

Projected impact of the results

