Unpolarized TCS physics case

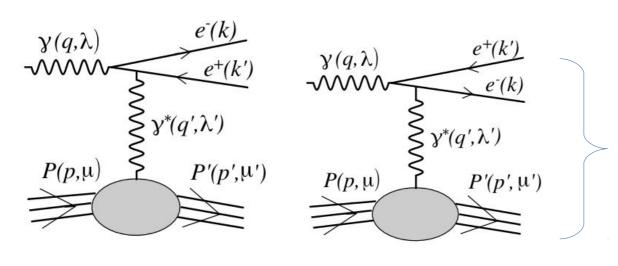
Why unpolarized TCS is needed?

- need basis of unpolarized cross section for global fits
- $_{\rightarrow}$ 2 independent observables: $\sigma_{_{unpol}}$ and circularly polarized $\Delta\sigma_{_{\odot U}}$
- universality studies on GPD H
- → need of high precision for twist 3 accuracy on the measurement and comparison with DVCS
- → need many independent observables from DVCS and TCS (polarized...) to bring constrain on correlations and beyond twist 2, LO formalism.
- → Comes from both high precision unpolarized experiment and polarized measurements: unpolarized TCS is not enough (kinematic factors), DVCS is not enough (one limited process)
- Easier to measure than polarized target cross section (not a good argument)
- → First step prior polarized experiment
- → need for systematics on similar experiment than polarized one
- New observables:
- \rightarrow with high precision: CT parity with θ asymmetry and comparison with DVCS charge asymmetries. Need to go to .1% accuracy at least on interference sensitivity

What can be better than Hall B and SoLID?

• Hall B:

- poor statistics and had to be extended to low Q'2 region (>1/2 data on tape)
- → OK for a first measurement, but global fits cannot be performed nor unbiased CFFs extraction
- Physics case based on misleading argument of extracting Re(\mathcal{H}) to compare with DVCS charge
- \rightarrow it is wrong and TCS will do worse than DVCS in same conditions at extracting CFFs and Re(\mathcal{H})
- → Unpolarized x-sec: Im + Re, more difficult to access Re, mostly from correlations
- → charge asymmetries in DVCS are not related to cosine projection of TCS

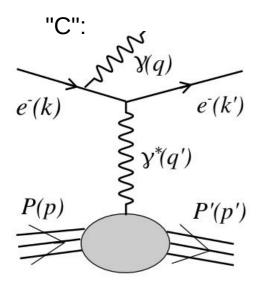

SoLID:

- expected high statistics, should reach precision for global fits
- nothing wrong in physics case but optimistic on Q'² and higher twist. Not good for dedicated exp. cons:
- no real photon beam → angular corrections... make harder precision measurements
- large acceptance range: good, but loose on precision. Proton may not be detected: projections for both case with and without. First precision measurement better using dedicated setup

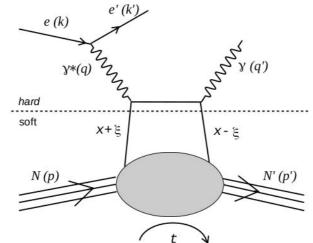
What can be better:

- real photon + better precision, limited acceptance focus all statistic at high intensity on few points
- possibility to enlarge e+e- angles to reach new kinematic regions with high enough statistics
- \Rightarrow high precision in ξ and lepton momenta on few selected points
- Similar apparatus than polarized TCS: not an argument for the PAC, but for systematics and interpretation of polarized results

Relation between TCS structure and DVCS charge asymmetries

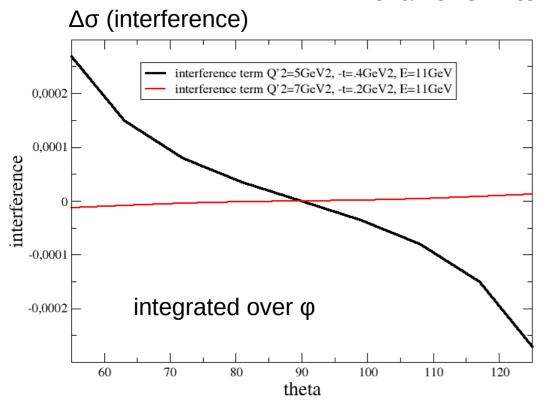

e e (k)

e (k)


e (k')

θ: refers to e-

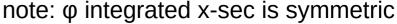
 \Rightarrow C-odd interference integration over θ: flat integration φ : θ interference change sign

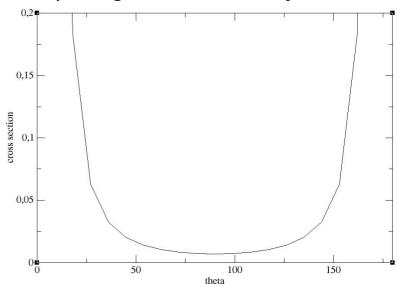

e± → T-odd charge

From Oleg Teryaev:

- TCS θ similar to FB asymmetries at LHC
- relation between parity in θ distributions of TCS and switching DVCS lepton charge assuming "CT" equivalent
- \Rightarrow TCS+BH interference behavior in θ
- ⇒ most accessible observable and precision needed?

Behavior of interference in θ


- ⇒ can be extracted from projections such as momenta of e+e-
- ⇒ the most important result that unpolarized TCS can bring, beyond global fits and universality studies


needs high precision in θ and momentum

Comparison of above parity violating interference to DVCS charge asymmetries

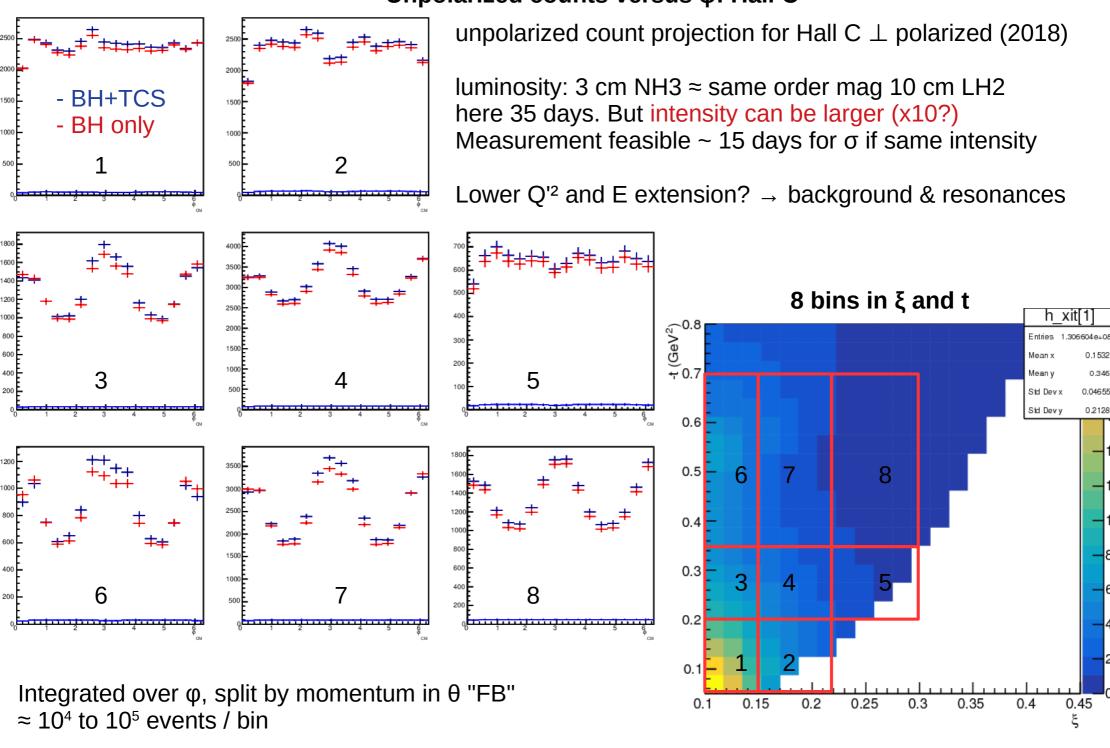
- → universality studies: CPT conserved
- \rightarrow should enhance Re(\mathcal{H}) in global fits but need theory proof

To do: fitter code is allowing to extract CFFs from both ϕ and θ distributions, but at fixed ϕ and interpretation of uncertainties not yet proven using θ distributions as well

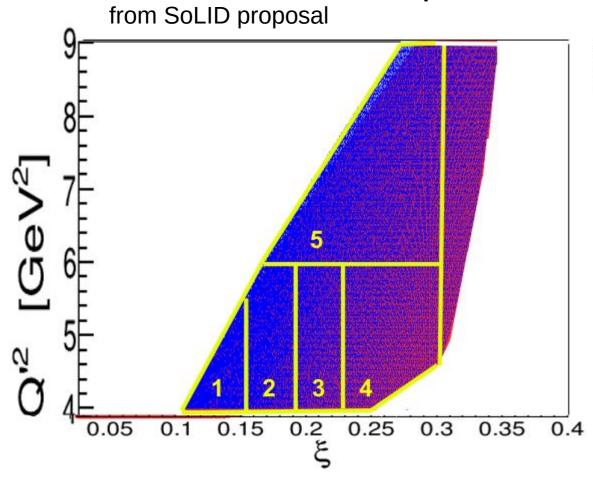
Other important input for the physics case:

- quasi-model independent global fits and uncertainty interpretations → work with Michel Guidal
- higher twist and universality studies → work with Simonetta Liuti
- \Rightarrow both need high precision in ξ in particular for real CFFs and universality

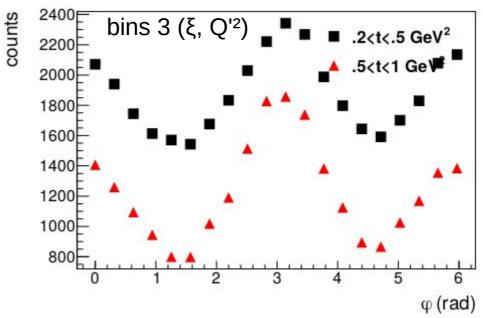
Main modification needed to polarized setup


- Magnet for e+e-p
- LH2 target 10 cm
- Different angles for the calorimeters, other possibilities with 1 calorimeter only
- → phase space studies in progress, ideal setup is different angles than polarized TCS
- Photon: CPS or 10% radiator? → depend on the statistics requirements and background

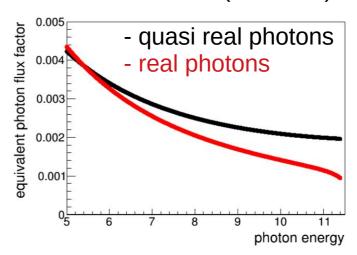
What needs to be done (physics):


- most relevant observables: σ , $\Delta \sigma$ + " θ " from leptons \rightarrow under discussion
- most relevant kinematics → likely lead to modification of the setup
- resolution on observables, exclusivity
- max accuracy on interference part and observable to access it
- global fits integrated over φ

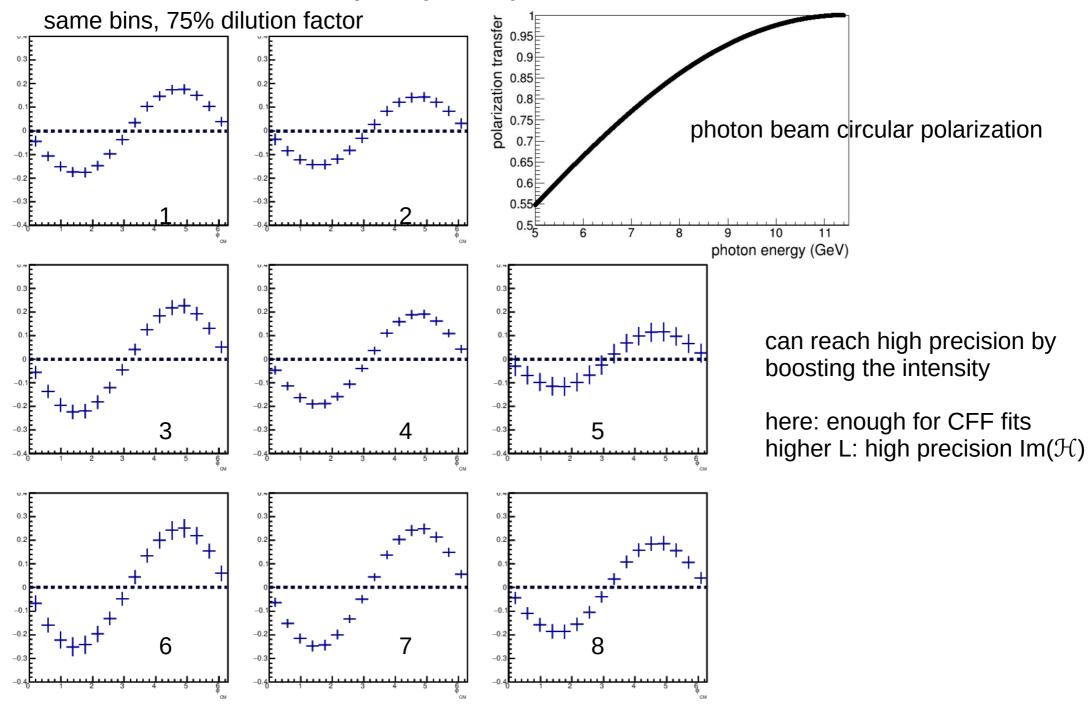
conclusion: not straightforward physics case and likely to require setup modification


Unpolarized counts versus φ: Hall C

Unpolarized counts versus φ: Hall A



Ν	$\xi(\eta)$ limits	$Q^{,2}$ limits (GeV^2)	-t limits (GeV ²)
1.	0.10, 0.15	4, 6	[0.1, 0.2], [0.2, 0.5]
2.	0.15, 0.19	4, 6	[0.1, 0.2], [0.2, 0.5], [0.5, 1]
3.	0.19, 0.23	4, 6	[0.2, 0.5], [0.5, 1]
4.	0.23, 0.30	4, 6	[0.2, 0.5], [0.5, 1]
5.	0.15, 0.30	6, 9	[0.2, 0.5], [0.5, 1]



Statistics similar looking at this figure, but: SoLID has wider bins in t, a bit narrower in ξ 30 days off 10 cm LH2, e- beam

- same code used, very old version here
- not same cuts: E (factor ~2), BH peaks...

Beam spin asymmetry in Hall C

