

NPS Collaborator's Meeting Update

Aaron Brown
Detector Support Group
10/01/2020

Contents

Cable Fabrication/Procurement

CAEN HV Testing

CSS-BOY Screen Development

Interlock System Development

Conclusion

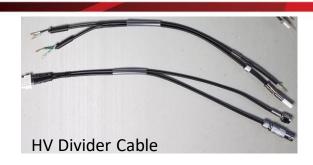
10/1/2020

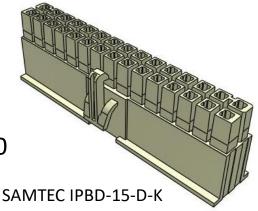
Cable Fabrication/Procurement

HV divider cable status

820 of 1100 fabricated

142' HV cables


- PR for 42 cables submitted on 08/24/2020
- Buyer (Jami Anthony) ordered on 09/28/2020
- ETA: December 2020


SAMTEC connectors

- PR for 100 8-pin, 50 15-pin submitted on 09/16/2020
- Buyer (Brittany Tolbert) ordered on 09/17/2020
- ETA: November 2020

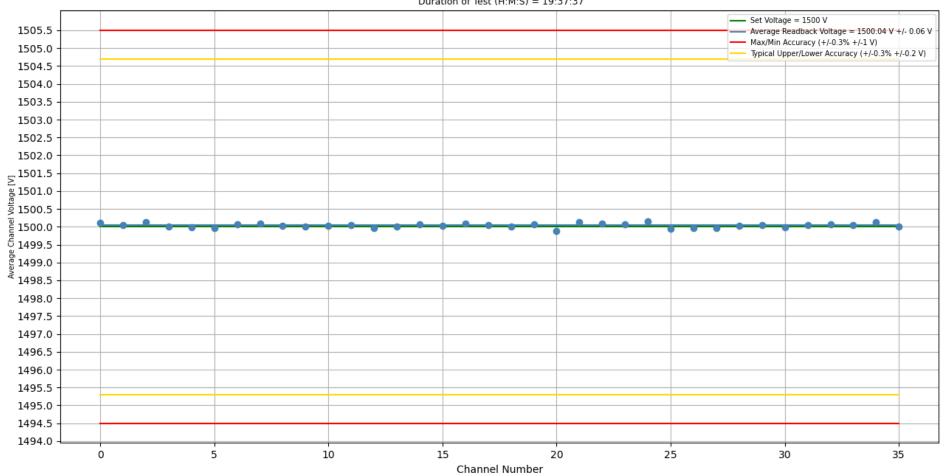
Radiall connectors

- PR for 40 connectors submitted on 08/24/2020
- Buyer (Albert DeChristopher) ordered on 08/26/2020
- ETA: November 2020

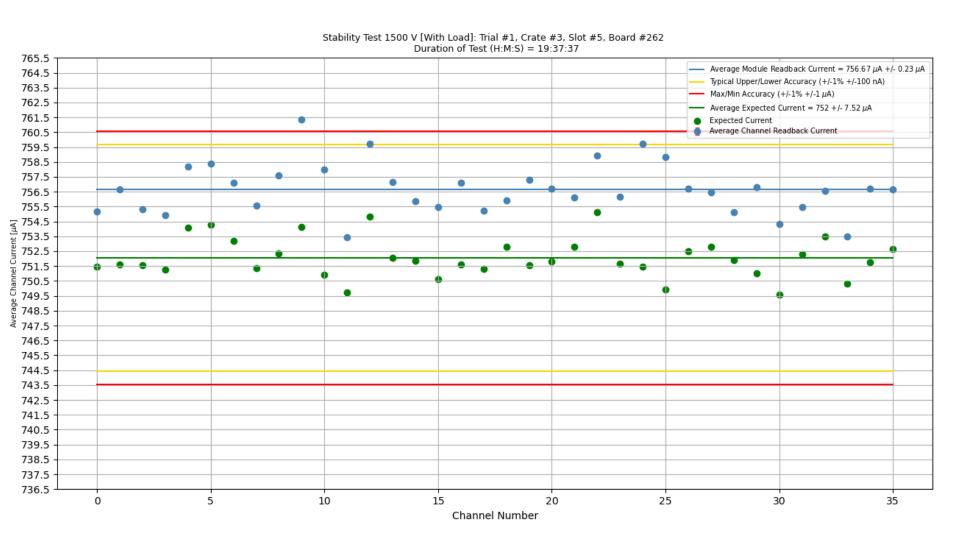
Radiall 52-pin connector

CAEN HV Testing

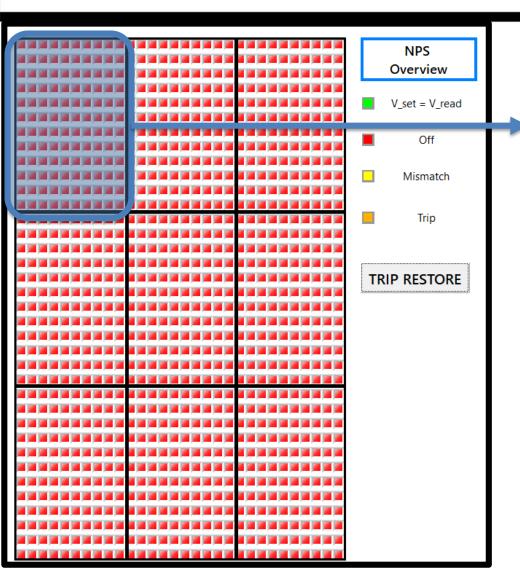
- Stability testing is complete
 - All modules tested using GECO 2020 and EPICS
 - GECO 2020 testing analysis summary for voltage and current
- Voltage and current analysis plots have been uploaded to the NPS section of the DSG technical documentation website


GECO TESTING: Voltage Stability					
#	Board# Date		Stability Test w/ Load	Analysis w/ Load	Status
1	128	02/19/20	1500 V	Average voltage for all channels within manufacturers specs.	
2	173	02/04/20	1500 V	Average voltage for all channels within manufacturer's specs.	
3	184	02/06/20	1500 V	Average voltage for all channels within manufacturer's specs.	
4	256	03/02/20	1500 V	Average voltage for all channels within manufacturers specs.	
5	262	02/18/20	1500 V	Average voltage for all channels within manufacturers specs.	
6	297			Not tested due to pin issue	
7	299	02/04/20	1500 V	Needs to be retested due to pin issue	
8	301	02/13/20	1500 V	Average voltage for all channels within manufacturers specs.	
9	302	02/28/20	1500 V	Average voltage for all channels within manufacturer's specs.	
10	304	02/07/20	1500 V	Average voltage for all channels within manufacturer's specs.	
11	309	06/29/20	1500 V	Average voltage for all channels within manufacturer's specs.	
12	313	06/26/20	1500 V	Average voltage for all channels within manufacturer's specs.	

Snippet of the testing analysis summary for voltage stability testing showing the analysis for the first twelve of 34 modules

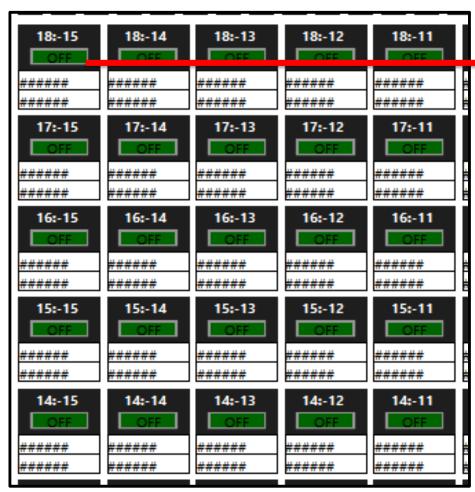

Voltage Stability Plot for Module #262

Stability Test 1500 V [With Load]: Trial #1, Crate #3, Slot #5, Board #262 Duration of Test (H:M:S) = 19:37:37

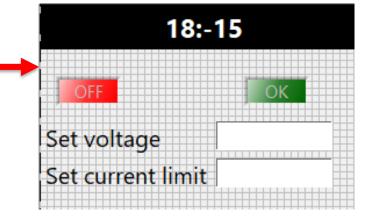


Current Stability Plot for Module #262

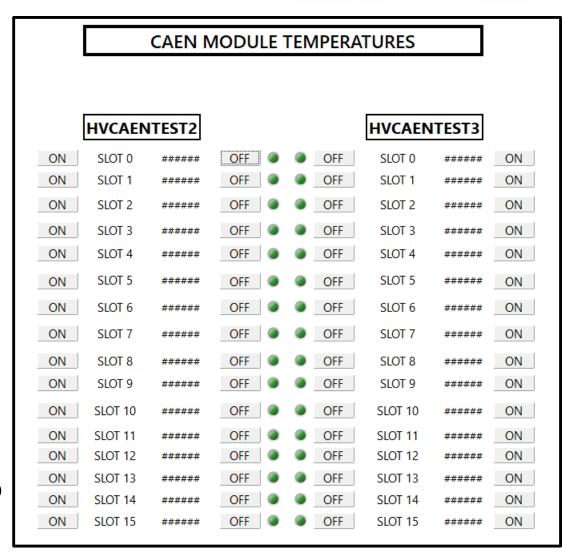
CSS-BOY Screen Development



-										
ı	18:-15	18:-14	18:-13	18:-12	18:-11	18:-10	18:-9	18:-8	18:-7	18:-6
ı	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
ı	******	******	******	###### ######	*****	*****	*****	****** ******	*****	##### ######
	17:-15	17:-14	17:-13	17:-12	17:-11	17:-10	17:-9	17:-8	17:-7	17:-6
-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
		******	******	*****	*****	******	******	******	*****	*****
1	16:-15	16:-14	16:-13	16:-12	16:-11	16:-10	16:-9	16:-8	16:-7	16:-6
ľ	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
ı	*****	*****	*****	#####	*****	*****	*****	*****	*****	*****
ı	15:-15	15:-14	15:-13	15:-12	15:-11	15:-10	15:-9	15:-8	##### 15:-7	15:-6
ı	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
	*****	*****	*****	****	*****	*****	*****	*****	*****	*****
۱	******	*****	*****	#####	*****	*****	*****	#####	*****	#####
ı	14:-15	14:-14	14:-13	14:-12	14:-11	14:-10	14:-9	14:-8	14:-7	14:-6
ı	******	*****	*****	#####	*****	*****	*****	*****	*****	*****
ı	*****	*****	*****	*****	*****	*****	*****	*****	*****	#####
ı	13:-15	13:-14	13:-13	13:-12	13:-11	13:-10	13:-9	13:-8	13:-7	13:-6
	*****		######	#####	######	#####	*****	######	######	#####
П	*****		*****	#####	*****	#####	#####	#####	#####	#####
	12:-15	12:-14	12:-13	12:-12	12:-11	12:-10	12:-9	12:-8	12:-7	12:-6
1	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF.	OFF
			*****	*****	*****	*****	*****	*****	*****	*****
ı	11:-15	11:-14	11:-13	11:-12	11:-11	11:-10	11:-9	11:-8	11:-7	11:-6
ı	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
ı		******	******	*****	******	*****		******	##### ######	*****
ı	10:-15	10:-14	10:-13	10:-12	10:-11	10:-10	10:-9	10:-8	10:-7	10:-6
ı	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
	******		******	*****	*****	*****	******	******	******	*****
	9:-15	9:-14	9:-13	9:-12	9:-11	9:-10	9:-9	9:-8	9:-7	9:-6
-	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
	******	******	******	*****	*****	*****	*****	******	*****	*****
ı	8:-15	8:-14	##### 8:-13	8:-12	##### 8:-11	##### 8:-10	8:-9	8:-8	##### 8:-7	8:-6
ŀ	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
ı	*****	*****	*****	****	*****	*****	*****	*****	*****	*****
l	7:-15	7:-14	7:-13	##### 7:-12	##### 7:-11	7:-10	##### 7:-9	##### 7:-8	##### 7:-7	7:-6
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
	******	*****	*****	*****	*****	*****	*****	*****	*****	#####
	******	*****	*****	#####	*****	*****	*****	#####	*****	#####


- Sub-grid (1,1) screen of the NPS Overview screen
- 12x10 grid with voltage and current-limit settings readback for each PMT in the grid

CSS-BOY Screen Development


Sub-grid (1,1)

- Voltage and current limit setting screen for PMT in position 18:-15
- Screen shows if the PMT is powered ON (green), OFF (red), or if it is in a "Tripped" state (yellow)
- One of these screens will be made for each PMT
- Currently 180 of 1080 completed

CSS-BOY Screens Development

- Screen to show internal temperature for each module
- If module temperature goes above specified value, module automatically shuts off
- LEDs indicate whether module is ON or OFF
- Buttons allow modules to be turned ON and OFF manually

Interlock System Development

Sensor Type	Qty	Locations		
		Crystal Array, Detector Internal,		
Temperature	136	Electronics, Ambient		
Humidity	10	Detector Internal, Ambient		
Fan Speed	4	Electronics Zone, Heat Exchanger		
Light Sensor	2	Crystal Array		
Coolant Leak Sensor	2	Crystal Array, Electronics Zone		

Sensor list has been updated to reflect the type and number of sensors that will be needed for the NPS interlock system

Parameters	RTD	Thermistor	Thermocouple	
Accuracy	±0.1 to ±1°C	±.05 to ±1.5°C	±1 to ±2.2°C	
Stability	0.05°C/year	0.2°C/year	1.5°C/year	
Excitation	Required	Required	None	
Output	Resistance	Resistance	Voltage	
Output linearity	Linear	Non-linear	Non-linear	
Response time	1 to 10 s	0.12 to 10 s	0.5 to 10 s	
Range	-200 to 650°C	-100 to 325°C	-270 to 1800°C	
Relative cost	High	Low to Moderate	Low	
Signal conditioning needed (long leads)	No	No	Yes	
Self-heating	Yes, minimal	Yes, highly	No	
Detector example	Hall D Comcal	CMS ECAL	Primex HYCAL	
	Stable	Fast	High temps	
Overall advantages	Accurate	Accurate	Low cost	
	Linear	Low cost		

- Researching temperature sensors for use in detector interlock system; DSG Note 2020-35
- Table shows characteristics for three different types of temperature sensors
- An RTD, like the Omega PT100, is the front runner

10

Conclusions

- Ordered all components for multi-conductor HV cable
- Completed stability testing of CAEN HV modules
- **Developing Controls & Monitoring screens**
- Researching sensors for the interlock system
- Good progress

11

Thank You

12