Wide Angle Compton Scattering within the QCD factorization approach

Nikolay Kivel

Outline

Hard Exclusive processes in JLAB and challenges to theory

Hard and soft-overlap contributions: phenomenology

Soft-overlap contribution within the SCET framework

Complete factorization formula for the WACS amplitudes

WACS phenomenology

Conclusions

Hard exclusive processes at JLAB

QCD allows to predict the scaling behavior 1/Q^a

 $F_{1,2}^{N}(Q^{2})$ nucleon $F_{\pi}(Q^{2})$ pion Wide Angle Scattering

WACS $\gamma p \rightarrow \gamma p$

WAMP $\gamma p \rightarrow 0$

 $\gamma p \to (\pi,\rho,...)p$

Deeply virtual scattering

DVMP $\gamma^* p \to (\pi, \rho, ...)p$ **DVCS** $\gamma^* p \to \gamma p$ hadronic w.f. or Distribution Amplitudes

3D partonic structure: GPDs Hard exclusive processes: theory

QCD Factorization

if QCD factorization holds then one can compute systematically logarithmic corrections improving the description (systematic approach, model independent analysis)

Problems

 collinear factorization does not work for helicity flip amplitudes $\begin{array}{ccc} F_2^N(Q^2) & \Rightarrow & F_2/F_1 & \text{``difficult''} \\ \gamma_{\perp}^* p \to (\pi, \rho, ...)p & & \sigma_T/\sigma_L & \text{observables} \end{array}$

• asymptotic results applicable for a very-very-very LARGE Q² especially critical for small leading-order amplitudes $\sim \alpha_s(Q^2)$ $F_{\pi}(Q^2) \sim \alpha_s(Q^2)/Q^2$ $\gamma_L^* p \to (\pi, \rho, ...)p$ $F_1(Q^2) \sim \alpha_s^2(Q^2)/Q^4$ $\gamma_P \to \gamma_P$ $\gamma_P \to (\pi, \rho, ...)p$

Hard exclusive processes: theory

Challenge for the all above processes is soft-overlap mechanism

Can soft-overlap mechanism provide the large contribution? How it behaves with respect to Q^2 ?

Phenomenology

- Large numerical effect for moderate values of Q
- Soft-overlap contribution is subleading in 1/Q²

LC wave functions Isgur, Smith 1984

QCD sum rules

Nesterenko, Radyushkin 1982,83 Braun et al, 2000, '02, '06, '13 GPD or handbag-model Radyushkin 1998 Kroll et al, 2002, '05, '10 WACS/annihilation $\gamma p \rightarrow \gamma p \quad \gamma \gamma \rightarrow p \overline{p}$

5

FF F1 at large-Q² hard and soft spectator contributions

Nucleon FF F₁ Chernyak, Zhitnitsky 1977 Brodsky, Lepage 1979

- $\sim \Lambda^4/Q^4$

Duncan, Mueller 1980 Fadin, Milshtein 1981,82 NK, Vanderhaeghen 2010 NK, 2012

 $\sim \Lambda^4/Q^4$

hard- and soft-spectator contributions have the same power large rapidity log's from the soft-collinear overlap

- this estimates are also true for WACS amplitudes
- Soft spectator scattering is especially important in processes with baryons

Can one "observe" and to study the soft-overlap mechanism?

The best opportunity is provided by WACS

Hard exclusive processes: theory

Conclusion

One must understand better the role of the soft-overlap mechanism

Questions

Can we extend the collinear factorization framework and to develop a description of the configurations with the soft & collinear modes? (systematic approach)

Can we obtain a reliable theoretical description which has predictive power?

Opportunity

Use the Soft Collinear Effective Theory framework ...

Soft Collinear Effective Theory

description of the soft-overlap contribution involves 3 different scales

 $p = (p_+, p_\perp, p_-)$ QCD $p_h^2 \sim Q^2 \sim \mu_h^2$ $p_h \sim (Q, Q, Q)$ hard $p_{hc} \sim (Q, \sqrt{\Lambda Q}, \Lambda)$ hard-collinear $p_{hc}^2 \sim Q\Lambda \sim \mu_{hc}^2$ $p_c \sim (Q, \Lambda, \Lambda^2/Q)$ collinear $p_c^2 \sim p_s^2 \sim \Lambda^2 \sim \mu_s^2$ soft $p_s \sim (\Lambda, \Lambda, \Lambda)$

Amplitude
$$F(\mu_h^2 \sim Q^2, \, \mu_{hc}^2 \sim Q\Lambda, \, \mu_s^2 \sim \Lambda^2)$$

SC

bec

qua

ver

fror

ene

car

we

Soft Collinear Effective Theory

description of a hard contribution involves only 2 scales

Soft spectator scattering in the SCET framework

description of the soft spectator contribution involves 3 different scales

1. Factorize of the hard modes: $p_h^2 \sim Q^2 \gg \Lambda^2$ (hard subprocess)

 $\mathsf{QCD} \to \mathsf{SCET-I} \qquad F^{(s)}(\mathbf{Q}^2, \mathbf{Q}\Lambda, \Lambda^2) \simeq H(\mathbf{Q}^2) * f(\mathbf{Q}\Lambda, \Lambda^2)$

 $f(Q\Lambda, \Lambda^2) = \langle out | O | in \rangle_{\text{SCET}}$

well defined in field theory

moderate values of Q²:

 $Q\Lambda \sim m_N^2$ hard-collinear scale is not large $Q^2 = 4 - 25 {
m GeV}^2$ $\Lambda \simeq 0.3 {
m GeV}$ $Q\Lambda \simeq 0.6 - 1.5 {
m GeV}^2$

Soft spectator scattering in the SCET framework

description of the soft spectator contribution involves 3 different scales

2. Factorization of hard-collinear modes

$$p_{hc}^2 \sim Q\Lambda \gg m_N^2$$

 $SCET-I \rightarrow SCET-II = collinear + soft$

$$f(Q\Lambda, \Lambda^2) \simeq J_{hc}(Q\Lambda) * S[p_s] * \phi_N[p_c]$$

hard-collinear
subprocess

- provides an estimate of power of 1/Q at large Q
- allows one to establish the overlap between the hard- and soft-spectator contributions

Wide Angle Compton Scattering in SL region $s\sim -t\sim -u\sim Q\gg \Lambda^2$

WACS amplitude is described by 6 independent scalar amplitudes:

Babusci et al, 1998

 $\begin{array}{l} & T_{2,4,6} \Leftrightarrow M_{h,h}^{\lambda,\lambda'} & \text{helicity conserving} \\ & & \\ & & \\ & & \\ \end{array} \end{array}$

 $Q \to \infty$ $T_{2,4,6} \sim 1/Q^4$ $T_{1,3,5} \sim 1/Q^5$

NK, Vanderhaeghen 2012, 2013(in preparation)

$$\langle p' | \bar{\chi}_n \gamma_\perp \chi_{\bar{n}} - \bar{\chi}_{\bar{n}} \gamma_\perp \chi_n | p \rangle_{SCET} = \bar{N}(p') \frac{1}{4} \bar{n} n \gamma_\perp N(p) \mathcal{F}_1(t)$$

quark "jets"
$$\chi_n = \operatorname{Pexp}\left\{ig \int_{-\infty}^0 ds \,\bar{n} \cdot A_{hc}^{(n)}(s\bar{n})\right\} \frac{1}{4} \# \# \psi_{hc}(0)$$

NOT GPDs defined in the one collinear sector:

 $\bar{\chi}_n(0) \, \bar{n} \, \chi_n(\lambda \bar{n})$

$$s \sim -t \sim -u \sim Q \gg \Lambda^2$$

NK, M. Vanderhaeghen 2012, 2013(to appear)

$$T_i(s,t) = C_i(s,t) \mathcal{F}_1(t) + \Psi * H_i(s,t) * \Psi$$
 $i = 2,4,6$
 $T_i(s,t) \approx 0$ $i = 1,3,5$

 $\mathcal{F}_1(t), \, \mathbf{\Psi}$ unknown nonperturbative functions

 $C_i(s,t) \sim \mathcal{O}(1)$ $H_i(s,t) \sim \mathcal{O}(\alpha_s^2)$

$$T_i(s,t) = C_i(s,t) \mathcal{F}_1(t) + \Psi * H_i(s,t) * \Psi$$

regular = singular + singular \Rightarrow each term must be regularized NK, 2012

universality: one SCET FF \mathcal{F}_1 defines the all three amplitudes use the following $\mathcal{F}_1(t)$ does not depend on s features:

 $T_2(s,t) = C_2(s,t) \mathcal{F}_1(t) + \Psi * H_2(s,t) * \Psi$ using the simple structure

 $\Rightarrow \mathcal{F}_1(t) = \mathcal{R}(s,t) - \Psi * H_2(s,t) * \Psi/C_2(s,t)$

regular rat

Tio
$$\mathcal{R}(s,t) = rac{T_2(s,t)}{C_2(s,t)}$$
 $\mu_F^2 = -t$

 $T_2(s,t) = C_2(s,t)\mathcal{R}(s,t)$ i = 4, 6 $T_{i}(s',t) = C_{i}(s',t)\mathcal{R}(s,t) + \Psi * \left\{ H_{i}(s',t) - C_{i}(s',t)\frac{H_{2}(s,t)}{C_{2}(s,t)} \right\} * \Psi$ $s' \neq s!$

regular = regular +

regular

each term is regular!

15

$$\begin{split} T_{2}(s,t) &= C_{2}(s,t)\mathcal{R}(s,t) \\ T_{i}(s',t) &= C_{i}(s',t)\mathcal{R}(s,t) + \Psi * \left\{ H_{i}(s',t) - C_{i}(s',t)\frac{H_{2}(s,t)}{C_{2}(s,t)} \right\} * \ \Psi \\ H_{i}(s,t) &\sim \mathcal{O}(\alpha_{s}^{2}) \quad C_{i}(s,t) \sim \mathcal{O}(1) \qquad C_{2}^{\text{LO}} = -C_{4}^{\text{LO}} = \frac{s-u}{su} \quad C_{6}^{\text{LO}} = \frac{t}{su} \qquad \text{m=0} \end{split}$$

Brooks, Dixon, 2000

The hard-spectator contribution predicts the cross section at least an order of magnitude below the data

> Vanderhaeghen et al, 1997 Brooks, Dixon, 2000, Thomson et al, 2006

$$T_{2}(s,t) = C_{2}(s,t)\mathcal{R}(s,t)$$

$$T_{i}(s',t) = C_{i}(s',t)\mathcal{R}(s,t) + \Psi * \left\{ H_{i}(s',t) - C_{i}(s',t) \frac{H_{2}(s,t)}{C_{2}(s,t)} \right\} * \Psi$$

Assume that the hard-spectator corrections are small

$$\Rightarrow \mathcal{R}(s,t) = \frac{T_2(s,t)}{C_2(s,t)} \approx \mathcal{R}(t) \quad \begin{array}{c} \text{dominates by the soft-spectator} \\ \text{contribution} \end{array}$$

this can be checked experimentally

$$\frac{d\sigma}{dt} = \frac{\pi\alpha^2}{s^2} |\mathcal{R}(s,t)|^2 (-su) \left(\frac{1}{2} |C_2(s,t)|^2 + \frac{1}{2} |C_4(s,t)|^2 + |C_6(s,t)|^2\right) \qquad \text{m=0}$$
To the leading order accuracy
$$C_i = C_i^{\text{LO}} + \frac{\alpha_s}{4\pi} C_F \ C_i^{\text{NLO}} + \dots$$

$$\frac{d\sigma}{dt} \simeq \frac{2\pi\alpha^2}{s^2} |\mathcal{R}(s,t)|^2 \left(\frac{s}{-u} + \frac{-u}{s}\right) \Big|_{m=0} = \frac{d\sigma_0^{\text{KN}}}{dt} |\mathcal{R}(s,t)|^2$$

with NLO corrections

$$|\mathcal{R}(s,t)| \approx \sqrt{\frac{d\sigma^{\exp}/dt}{d\sigma_{0}^{\mathrm{KN}}/dt}} \left(1 - \frac{1}{2} \frac{\alpha_{s}}{4\pi} C_{F} \frac{C_{2}^{\mathrm{LO}} \mathrm{Re} \left[C_{2}^{\mathrm{NLO}} - C_{4}^{\mathrm{NLO}}\right] + C_{6}^{\mathrm{LO}} \mathrm{Re} \left[C_{6}^{\mathrm{NLO}}\right]}{|C_{2}^{\mathrm{LO}}|^{2} + |C_{6}^{\mathrm{LO}}|^{2}}\right)$$

used data: JLab/Hall-A, 2007

NK, Vanderhaeghen 2013 (in preparation)

> all power corrections m/Q are neglected

empirical fit:

$$\mathcal{R}(s,t)| = \left(\frac{\Lambda^2}{-t}\right)^{\alpha}$$

$$\begin{split} \Lambda &= 0.95 \pm 0.02 \\ \alpha &= 1.67 \pm 0.05 \\ \chi^2/dof &= 2.7 \end{split}$$

with NLO corrections & kinematical power corrections

$$\bar{\mathcal{R}}| = \sqrt{\frac{d\sigma^{\exp}}{dt}} : \sqrt{\frac{\pi\alpha^2}{(s-m^2)^2}} \left((s-m^2)(m^2-u)\frac{1}{2}(|\bar{C}_2|^2 + |\bar{C}_4|^2) + (m^4-su)|\bar{C}_6|^2 \right)$$

massless approximation $C_i(s,t)|_{m=0} = C_i(s,\cos\theta)$

$$\bar{C}_i(s,t) = C_i\left(s,\cos\theta = 1 + \frac{2ts}{(s-m^2)^2}\right) = C_i(s,\cos\theta)|_{m=0} + \mathcal{O}(m/s).$$

$$|\mathcal{R}(s,t)| = \left(\frac{\Lambda^2}{-t}\right)^2$$

	$\Lambda, { m GeV}$	lpha	$\chi^2/d.o.f$
$ \mathcal{R} , \mathrm{NLO}$	0.95 ± 0.02	1.67 ± 0.05	2.7
$ \bar{\mathcal{R}} , \mathrm{LO}$	1.0 ± 0.02	1.88 ± 0.05	1.1
$ \bar{\mathcal{R}} , \mathrm{NLO}$	0.98 ± 0.02	1.80 ± 0.05	1.25

The ratio ${\mathcal R}$ in phenomenology: TPE correction

Basic idea is the same:

to construct expansion with respect to large scale 1/Q

in the large-angle scattering domain $s\sim -t\sim -u\gg \Lambda^2$

NK, Vanderhaeghen, 2012

large values of \mathcal{E}

WACS phenomenology: longitudinal polarization KLL

$$K_{\rm LL} = \frac{\sigma_{\parallel}^R - \sigma_{\parallel}^L}{\sigma_{\parallel}^R + \sigma_{\parallel}^L} = \frac{s^2 - u^2}{s^2 + u^2} + \frac{\alpha_s}{\pi} C_F K_{\rm LL}^{\rm NLO}$$

ightarrow Does not depend on s & ${\cal R}$

m=0

NK, Vanderhaeghen, to appear

data: JLab/Hall-A, 2004

with the kinematical power corr's

23

Conclusions

Theory

The QCD factorization approach is improved using SCET framework. Hardand soft-spectator contributions are included consistently. The coefficient functions C_i computed at LO and NLO order.

 $T_{2}(s,t) = C_{2}(s,t)\mathcal{R}(s,t) \qquad i = 4,6$ $T_{i}(s',t) = C_{i}(s',t)\mathcal{R}(s,t) + \Psi * \left\{ H_{i}(s',t) - C_{i}(s',t)\frac{H_{2}(s,t)}{C_{2}(s,t)} \right\} * \Psi \qquad s' \neq s!$

Soft-overlap contribution is included in the one universal function *R* which:

 can be extracted from the data for the cross section is universal that allows to use it in description of other reactions (for instance, TPE)

 To improve the theory one needs:

 to compute the hard-spectator corrections
 to include the helicity flip amplitudes (KLS) T_i(s,t) ≈ 0 i = 1,3,5
 to consider other processes γ^{*}_⊥p → (π, ρ, ...)p (in progress)

New data will help:

- to verify the description at larger s and -t (s-dependence!)
- reduce the effect of the power corrections
- to extract \mathcal{R} in order to use in description of the other processes (TPE, comparison with the time-like region)

Conclusions

Experiment: asymmetries

• Existing data-points corresponds to small value u=-1.1GeV²

 \Rightarrow sensitive to the power corrections

more data are required to check the angle and energy dependence
the data at larger values of s are less affected from the power corrections