
Nikolay  Kivel 

  Wide Angle Compton Scattering 
within 

the QCD factorization approach

1



Outline
Hard Exclusive processes in JLAB and challenges to theory 

Complete factorization formula 
                    for the WACS amplitudes

WACS phenomenology

Conclusions 

Hard and soft-overlap contributions: phenomenology

Soft-overlap contribution 
       within the SCET framework 

2



Hard exclusive processes at JLAB

Hadronic Form Factors

Fπ(Q
2)

FN
1,2(Q

2)QCD 
allows 

to predict
the

 scaling 
behavior

1/Qa

Deeply virtual scattering 

DVCS
DVMP

γ∗p → γp

γ∗p → (π, ρ, ...)p

Wide Angle Scattering   

WACS

WAMP

hadronic w.f.
or 

Distribution
Amplitudes

3D partonic 
structure: 

 GPDs

γp → γp

pion

nucleon

γp → (π, ρ, ...)p
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if QCD factorization holds then one can compute systematically
 logarithmic  corrections improving the description 
(systematic approach, model independent analysis)  

QCD Factorization

collinear factorization 
does not work for 

helicity flip amplitudes 

FN
2 (Q2)

Hard exclusive processes: theory

γ∗
⊥p → (π, ρ, ...)p

⇒

Problems

“difficult”    
observables

F2/F1

σT /σL

asymptotic results applicable for a very-very-very LARGE Q2 

especially critical for small leading-order amplitudes  ∼ αs(Q
2)

γ∗
Lp → (π, ρ, ...)p

Fπ(Q
2) ∼ αs(Q

2)/Q2

F1(Q
2) ∼ α2

s(Q
2)/Q4

γp → γp

γp → (π, ρ, ...)p 4



Hard exclusive processes: theory
Challenge for the all above processes is  soft-overlap mechanism

hard- 
spectator
scattering

Soft-
spectator 
scattering

Isgur, Smith 1984
LC wave functions Nesterenko, Radyushkin 1982,83

Braun et al, 2000, ’02, ’06, ’13

QCD sum rules
Radyushkin 1998
Kroll et al, 2002, ’05, ’10 

GPD or handbag-model 

WACS/annihilation
γp → γp γγ → pp̄

Can soft-overlap mechanism provide the  large 
contribution? How it behaves with respect to Q2 ?

Large numerical effect for moderate values of Q

Soft-overlap contribution is subleading in 1/Q2
Phenomenology
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hard- and soft-spectator contributions have the same power

☛ Soft spectator scattering is especially important in 
processes with baryons  

Duncan, Mueller 1980
Nucleon FF  F1

∼ Λ4/Q4

FF F1 at large-Q2 hard and soft spectator contributions 

Chernyak, Zhitnitsky 1977
Brodsky, Lepage 1979

∼ Λ4/Q4

large rapidity log’s from the soft-collinear overlap

NK, Vanderhaeghen 2010
NK, 2012

this estimates are also true for  WACS amplitudes

Fadin, Milshtein 1981,82

Can one “observe” and to study the soft-overlap mechanism? 

The best opportunity is provided by WACS ☛ 6



Hard exclusive processes: theory

 Questions 
Can we extend  the collinear factorization framework and  to 
develop a description of the configurations with the soft & 
collinear  modes?  (systematic approach)

One must understand better the role of the soft-overlap 
mechanism 

 Conclusion 

Can we obtain a reliable theoretical description which has 
 predictive power?

Opportunity

Use the Soft Collinear Effective Theory  framework ...
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Soft Collinear Effective Theory

description of the soft-overlap contribution involves 3 different scales   

QCD

hard 

pc ∼ (Q,Λ,Λ2/Q)

ps ∼ (Λ,Λ,Λ)

phc ∼ (Q,
�

ΛQ,Λ) hard-collinear

collinear

 soft

Amplitude

ph ∼ (Q,Q,Q)

p = (p+, p⊥, p−)

F (µ2
h ∼ Q2, µ2

hc ∼ QΛ, µ2
s ∼ Λ2)

p2h ∼ Q2 ∼ µ2
h

p2hc ∼ QΛ ∼ µ2
hc

p2c ∼ p2s ∼ Λ2 ∼ µ2
s

SCET has been developed for description of B-decays 
because  the  heavy meson at rest frame consist of heavy 
quark and soft light quark. Therefore when the heavy quark 
very quickly decays on light quarks and gluons then one has 
from the beginning has to deal with the state  which consist of 
energetic  and soft  partons. In hadronic reactions such state 
can be generated dynamically as an intermediate state. Then 
we say that we have an soft-overlap contribution. 
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Soft Collinear Effective Theory

description of a hard contribution involves only 2 scales   

QCD

hard 

pc ∼ (Q,Λ,Λ2/Q)

ps ∼ (Λ,Λ,Λ)

phc ∼ (Q,
�

ΛQ,Λ) hard-collinear

collinear

 soft

Amplitude

ph ∼ (Q,Q,Q)

p = (p+, p⊥, p−)

F (µ2
h ∼ Q2, µ2

hc ∼ QΛ, µ2
s ∼ Λ2)

p2h ∼ Q2 ∼ µ2
h

p2hc ∼ QΛ ∼ µ2
hc

p2c ∼ p2s ∼ Λ2 ∼ µ2
s
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Soft spectator scattering in the SCET framework

description of the soft spectator contribution involves 3 different scales   

(hard subprocess)  1. Factorize of the hard modes:    

 QCD    SCET-I F
(s)(Q2

, QΛ,Λ2) � H(Q2) ∗ f(QΛ,Λ2)

p2h ∼ Q2 � Λ2

f(QΛ,Λ2) = �out|O|in�SCET
well defined 

in field theory 

☛ moderate values of Q2 :

QΛ ∼ m2
N hard-collinear scale is not large

Λ � 0.3GeV

Q2 = 4− 25GeV2

QΛ � 0.6− 1.5GeV2
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Soft spectator scattering in the SCET framework

description of the soft spectator contribution involves 3 different scales   

2. Factorization of  hard-collinear modes 

SCET-I     SCET-II = collinear + soft

p2hc ∼ QΛ � m2
N

f(QΛ,Λ2) � Jhc(QΛ) ∗ S[ps] ∗ φN [pc]
hard-collinear 
 subprocess  

provides an estimate of power of 1/Q at large Q

allows one to establish the overlap between the hard- and 
soft-spectator contributions
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Wide Angle Compton Scattering in SL region

T2,4,6

T1,3,5

WACS amplitude is described by 6 independent scalar amplitudes: 

= +

Ci

F1

HiΨ Ψ
Ti

Babusci et al, 1998

Mλ,λ�

h,−h

Mλ,λ�

h,h

λ λ�

⇔
⇔ helicity flip

helicity conserving

i = 2, 4, 6Ti(s, t) = Ci(s, t)F1(t) +Ψ ∗Hi(s, t) ∗Ψ

= +

Ci

F1

HiΨ Ψ
Ti

s ∼ −t ∼ −u ∼ Q � Λ2

T2,4,6 ∼ 1/Q4 T1,3,5 ∼ 1/Q5
Q → ∞

NK, Vanderhaeghen 
2012, 2013(in preparation)
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�p�|χ̄nγ⊥χn̄ − χ̄n̄γ⊥χn|p�SCET = N̄(p�)
1

4
/̄n/nγ⊥N(p)F1(t)

quark “jets” χn = Pexp

�
ig

� 0

−∞
ds n̄ ·A(n)

hc (sn̄)

�
1

4
/n/̄nψhc(0)

soft spectators
n hard-coll 

sector n hard-coll sector
-

H

p� � Q
n

2
p � Q

n̄

2

SCET form factors z�p

�p�

n̄ = (1, 0, 0, 1)

n = (1, 0, 0,−1)

NOT GPDs defined in the one collinear sector: χ̄n(0) /̄nχn(λn̄)
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Ci(s, t) ∼ O(1) Hi(s, t) ∼ O(α2
s)

WACS phenomenology s ∼ −t ∼ −u ∼ Q � Λ2

use universality of the definition 

unknown nonperturbative functions 

Ti(s, t) = Ci(s, t)F1(t) +Ψ ∗Hi(s, t) ∗Ψ i = 2, 4, 6

F1(t), Ψ

Ti(s, t) ≈ 0 i = 1, 3, 5

Ti(s, t) = Ci(s, t)F1(t) +Ψ ∗Hi(s, t) ∗Ψ

regular =    singular     +     singular

NK,  2012⇒ each term must be regularized

NK, M. Vanderhaeghen  2012, 2013(to appear)
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WACS phenomenology

use the 
following 
features: 

universality: one SCET FF     defines the all three amplitudesF1

F1(t) does not depend on s

F1(t) = R(s, t)−Ψ ∗H2(s, t) ∗Ψ/C2(s, t)

µ2
F = −tR(s, t) =

T2(s, t)

C2(s, t)

Ti(s
�
, t) = Ci(s

�
, t)R(s, t) +Ψ ∗

�
Hi(s

�
, t)− Ci(s

�
, t)

H2(s, t)

C2(s, t)

�
∗ Ψ

T2(s, t) = C2(s, t)F1(t) +Ψ ∗H2(s, t) ∗Ψ

⇒

regular =    regular   +            regular

using the simple structure

T2(s, t) = C2(s, t)R(s, t)
i = 4, 6

s� �= s!

each term is regular!

regular ratio
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WACS phenomenology

Ti(s
�
, t) = Ci(s

�
, t)R(s, t) +Ψ ∗

�
Hi(s

�
, t)− Ci(s

�
, t)

H2(s, t)

C2(s, t)

�
∗ Ψ

Ci(s, t) ∼ O(1)Hi(s, t) ∼ O(α2
s) CLO

2 = −CLO

4 =
s− u

su
CLO

6 =
t

su
m=0

Vanderhaeghen et al, 1997
Brooks, Dixon, 2000,
Thomson et al, 2006

The hard-spectator contribution predicts 
the cross section at least an order of 
magnitude below the data

θ
Figure 9: The unpolarized scaled cross section (12) for all six distribution amplitudes, for αs = 0.3
and fN = 5.2 × 10−3 GeV2, compared with experiment [20].

14

Brooks, Dixon, 2000

αs = 0.3

Figure 9: The unpolarized scaled cross section (12) for all six distribution amplitudes, for αs = 0.3
and fN = 5.2 × 10−3 GeV2, compared with experiment [20].
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T2(s, t) = C2(s, t)R(s, t)
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WACS phenomenology

Ti(s
�
, t) = Ci(s

�
, t)R(s, t) +Ψ ∗

�
Hi(s

�
, t)− Ci(s

�
, t)

H2(s, t)

C2(s, t)

�
∗ Ψ

Assume that the hard-spectator corrections are small

⇒

this can be checked experimentally

dominates by the soft-spectator 
contribution

R(s, t) =
T2(s, t)

C2(s, t)
≈ R(t)

dσ

dt
=

πα2

s2
|R(s, t)|2(−su)

�
1

2
|C2(s, t)|2 +

1

2
|C4(s, t)|2 + |C6(s, t)|2

�
m=0

dσ

dt
� 2πα2

s2
|R(s, t)|2

�
s

−u
+

−u

s

�����
m=0

=
dσKN

0

dt
|R(s, t)|2

To the leading order accuracy Ci = CLO

i +
αs

4π
CF CNLO

i + . . .

T2(s, t) = C2(s, t)R(s, t)
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WACS phenomenology

|R|
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Figure 8: The extracted values of |R| as a functions of the momentum transfer obtained using the leading-

order (open squares) and next-to-leading order (color circles) approximations for the hard coefficient

functions Ci . The solid line demonstrates the fit of the NLO |R| using the power behavior as in

Eq.(122). The shaded area shows the 99% confidence bands.

the |R|NLO to the variable s at t = −2.5GeV2 comparing to |R|LO. The effect from the RCs for the R̄
is quite similar. Taking into account that the hard-spectator contribution provides of about 10% of the

cross section [7, 8, 9, 10] we can conclude that computed RCs provide a comparable numerical effect.
The inclusion of the power corrections as described above reduce the absolute value of R̄ in the interval

0− 13% for the different values of −t. One can also observe that extracted values R̄ are less sensitive to

the value of s then R. This may indicate that the more sensitive to s behavior of R can be associated

with the power corrections.

In the figures describing the ratio R we show the empirical fit of the extracted points (solid line)

together with the 99% confidence bands (gray shaded area). For the empirical fit we used a simple power

function

|R(s, t)| =
�
Λ2

−t

�α

. (122)

where α and Λ are unknown fitting parameters. The results of the fit for different cases are shown in

Table 1. One can see there that χ2/d.o.f is much better for R̄ extracted with the kinematical power

corrections. This is the consequence of the less sensitive behavior of the extracted points for R̄ with

respect to energy s as we discussed above. It is also interesting to note that obtained results for the

Table 1: Results for the parameters Λ and α defining the behavior (122) for the ratios |R| in Fig.8 and

|R̄| in Fig.9

Λ, GeV α χ2/d.o.f

|R|, NLO 0.95± 0.02 1.67± 0.05 2.7

|R̄|, LO 1.0± 0.02 1.88± 0.05 1.1

|R̄|, NLO 0.98± 0.02 1.80± 0.05 1.25

exponent α are somewhat smaller then the expected asymptotic power behavior obtained from the SCET

analysis: |R(s, t)| ∼ (−t)−2
. But for the discussed values of the momentum transfer −t � 2.5 − 7GeV2

the hard-collinear scale µhc �
√
ΛQ is still quite small. Therefore we expect that these empirical values

of α can be a result of the oversimplified choice of the fit formula in Eq.(122). The measurements of the

cross section for the higher values of −t can help to clarify this situation.
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|R(s, t)| ≈

�
dσexp/dt

dσKN
0 /dt

�
1− 1

2

αs

4π
CF

CLO

2 Re [CNLO

2 − CNLO

4 ] + CLO

6 Re [CNLO

6 ]

|CLO

2 |2 + |CLO

6 |2

�

with NLO corrections

NK, Vanderhaeghen 
2013 (in preparation)

all power corrections
m/Q are neglected

empirical fit:

used data: JLab/Hall-A, 2007

|R(s, t)| =
�
Λ2

−t

�α

Λ = 0.95± 0.02
α = 1.67± 0.05

χ2/dof = 2.7
18



WACS phenomenology

with NLO corrections & kinematical power corrections 

|R̄| =
�

dσexp

dt
:

�
πα2

(s−m2)2

�
(s−m2)(m2 − u)

1

2
(|C̄2|2 + |C̄4|2) + (m4 − su)|C̄6|2

�
.

C̄i(s, t) = Ci

�
s, cos θ = 1 +

2ts

(s−m2)2

�
= Ci(s, cos θ)|m=0 +O(m/s).

Ci(s, t)|m=0 = Ci(s, cos θ)massless approximation 
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WACS phenomenology

empirical fit:

|R(s, t)| =
�
Λ2

−t

�α

NK, Vanderhaeghen, to appear

|R̄|
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Figure 9: The extracted values of |R̄| as a functions of the momentum transfer obtained using the

leading-order (upper plot) and next-to-leading (bottom plot) order approximations for the hard coefficient

functions C̄i. The open squares (rhombs) show the LO (NLO) values extracted withm = 0 using Eq.(118).

The solid lines show the fit of the |R̄| with the formula in Eq.(122). The shaded area shows the 99%

confidence bands.

The other measured observables which are very helpful in order to clarify the underlying partonic

dynamics are given by the recoil polarizations KLL and KLS. They can be constructed for the circular

polarized photon (R,L) and longitudinal (�) or transverse (⊥) polarization of the recoiled proton. In

the current work we consider only the longitudinal polarization KLL because it does not depend on the

helicity flip amplitudes at the leading power approximation. Its definition reads

KLL =
σR
� − σL

�

σR
� + σL

�
. (123)

Computing this asymmetry with the help of the approximation Eq.(113) we obtain that the unknown

factor |R| cancel in the ratio and the asymmetry is defined only by the perturbative coefficients Ci.

Neglecting the all power corrections and using the next-to-leading expressions we obtain

KLL =
s2 − u2

s2 + u2
− αs

π
CF

1

(s2 + u2)
2

�
(t− s)u3

ln
2
[|u|/|t|]− (t− u)s3 ln2 [s/|t|]

+su2
(2t− s) ln [|u|/|t|]− us2(2t− u) ln [s/|t|]− π2

(s− t)u3
�
+O(α2

s), (124)

The leading-order contribution in this expression reproduces the well-known expression for the Klein-

Nishina asymmetry which describes the scattering on the point-like massless particles. Obviously, this
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Leading-order

|R̄|
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Figure 9: The extracted values of |R̄| as a functions of the momentum transfer obtained using the

leading-order (upper plot) and next-to-leading (bottom plot) order approximations for the hard coefficient

functions C̄i. The open squares (rhombs) show the LO (NLO) values extracted withm = 0 using Eq.(118).

The solid lines show the fit of the |R̄| with the formula in Eq.(122). The shaded area shows the 99%

confidence bands.

The other measured observables which are very helpful in order to clarify the underlying partonic

dynamics are given by the recoil polarizations KLL and KLS. They can be constructed for the circular

polarized photon (R,L) and longitudinal (�) or transverse (⊥) polarization of the recoiled proton. In

the current work we consider only the longitudinal polarization KLL because it does not depend on the

helicity flip amplitudes at the leading power approximation. Its definition reads

KLL =
σR
� − σL

�

σR
� + σL

�
. (123)

Computing this asymmetry with the help of the approximation Eq.(113) we obtain that the unknown

factor |R| cancel in the ratio and the asymmetry is defined only by the perturbative coefficients Ci.

Neglecting the all power corrections and using the next-to-leading expressions we obtain

KLL =
s2 − u2

s2 + u2
− αs

π
CF

1

(s2 + u2)
2

�
(t− s)u3

ln
2
[|u|/|t|]− (t− u)s3 ln2 [s/|t|]

+su2
(2t− s) ln [|u|/|t|]− us2(2t− u) ln [s/|t|]− π2

(s− t)u3
�
+O(α2

s), (124)

The leading-order contribution in this expression reproduces the well-known expression for the Klein-

Nishina asymmetry which describes the scattering on the point-like massless particles. Obviously, this
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Next-to-Leading-order

with NLO corrections & kinematical power corrections 
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Figure 8: The extracted values of |R| as a functions of the momentum transfer obtained using the leading-

order (open squares) and next-to-leading order (color circles) approximations for the hard coefficient

functions Ci . The solid line demonstrates the fit of the NLO |R| using the power behavior as in

Eq.(122). The shaded area shows the 99% confidence bands.

the |R|NLO to the variable s at t = −2.5GeV2 comparing to |R|LO. The effect from the RCs for the R̄
is quite similar. Taking into account that the hard-spectator contribution provides of about 10% of the

cross section [7, 8, 9, 10] we can conclude that computed RCs provide a comparable numerical effect.
The inclusion of the power corrections as described above reduce the absolute value of R̄ in the interval

0− 13% for the different values of −t. One can also observe that extracted values R̄ are less sensitive to

the value of s then R. This may indicate that the more sensitive to s behavior of R can be associated

with the power corrections.

In the figures describing the ratio R we show the empirical fit of the extracted points (solid line)

together with the 99% confidence bands (gray shaded area). For the empirical fit we used a simple power

function

|R(s, t)| =
�
Λ2

−t

�α

. (122)

where α and Λ are unknown fitting parameters. The results of the fit for different cases are shown in

Table 1. One can see there that χ2/d.o.f is much better for R̄ extracted with the kinematical power

corrections. This is the consequence of the less sensitive behavior of the extracted points for R̄ with

respect to energy s as we discussed above. It is also interesting to note that obtained results for the

Table 1: Results for the parameters Λ and α defining the behavior (122) for the ratios |R| in Fig.8 and

|R̄| in Fig.9

Λ, GeV α χ2/d.o.f

|R|, NLO 0.95± 0.02 1.67± 0.05 2.7

|R̄|, LO 1.0± 0.02 1.88± 0.05 1.1

|R̄|, NLO 0.98± 0.02 1.80± 0.05 1.25

exponent α are somewhat smaller then the expected asymptotic power behavior obtained from the SCET

analysis: |R(s, t)| ∼ (−t)−2
. But for the discussed values of the momentum transfer −t � 2.5 − 7GeV2

the hard-collinear scale µhc �
√
ΛQ is still quite small. Therefore we expect that these empirical values

of α can be a result of the oversimplified choice of the fit formula in Eq.(122). The measurements of the

cross section for the higher values of −t can help to clarify this situation.
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WACS phenomenology

empirical fit:

|R(s, t)| =
�
Λ2

−t

�α

NK, Vanderhaeghen, to appear
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Figure 9: The extracted values of |R̄| as a functions of the momentum transfer obtained using the

leading-order (upper plot) and next-to-leading (bottom plot) order approximations for the hard coefficient

functions C̄i. The open squares (rhombs) show the LO (NLO) values extracted withm = 0 using Eq.(118).

The solid lines show the fit of the |R̄| with the formula in Eq.(122). The shaded area shows the 99%

confidence bands.

The other measured observables which are very helpful in order to clarify the underlying partonic

dynamics are given by the recoil polarizations KLL and KLS. They can be constructed for the circular

polarized photon (R,L) and longitudinal (�) or transverse (⊥) polarization of the recoiled proton. In

the current work we consider only the longitudinal polarization KLL because it does not depend on the

helicity flip amplitudes at the leading power approximation. Its definition reads

KLL =
σR
� − σL

�

σR
� + σL

�
. (123)

Computing this asymmetry with the help of the approximation Eq.(113) we obtain that the unknown

factor |R| cancel in the ratio and the asymmetry is defined only by the perturbative coefficients Ci.

Neglecting the all power corrections and using the next-to-leading expressions we obtain

KLL =
s2 − u2

s2 + u2
− αs

π
CF

1

(s2 + u2)
2

�
(t− s)u3

ln
2
[|u|/|t|]− (t− u)s3 ln2 [s/|t|]

+su2
(2t− s) ln [|u|/|t|]− us2(2t− u) ln [s/|t|]− π2

(s− t)u3
�
+O(α2

s), (124)

The leading-order contribution in this expression reproduces the well-known expression for the Klein-

Nishina asymmetry which describes the scattering on the point-like massless particles. Obviously, this
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Next-to-Leading-order

with NLO corrections & kinematical power corrections 
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Figure 8: The extracted values of |R| as a functions of the momentum transfer obtained using the leading-

order (open squares) and next-to-leading order (color circles) approximations for the hard coefficient

functions Ci . The solid line demonstrates the fit of the NLO |R| using the power behavior as in

Eq.(122). The shaded area shows the 99% confidence bands.

the |R|NLO to the variable s at t = −2.5GeV2 comparing to |R|LO. The effect from the RCs for the R̄
is quite similar. Taking into account that the hard-spectator contribution provides of about 10% of the

cross section [7, 8, 9, 10] we can conclude that computed RCs provide a comparable numerical effect.
The inclusion of the power corrections as described above reduce the absolute value of R̄ in the interval

0− 13% for the different values of −t. One can also observe that extracted values R̄ are less sensitive to

the value of s then R. This may indicate that the more sensitive to s behavior of R can be associated

with the power corrections.

In the figures describing the ratio R we show the empirical fit of the extracted points (solid line)

together with the 99% confidence bands (gray shaded area). For the empirical fit we used a simple power

function

|R(s, t)| =
�
Λ2

−t

�α

. (122)

where α and Λ are unknown fitting parameters. The results of the fit for different cases are shown in

Table 1. One can see there that χ2/d.o.f is much better for R̄ extracted with the kinematical power

corrections. This is the consequence of the less sensitive behavior of the extracted points for R̄ with

respect to energy s as we discussed above. It is also interesting to note that obtained results for the

Table 1: Results for the parameters Λ and α defining the behavior (122) for the ratios |R| in Fig.8 and

|R̄| in Fig.9

Λ, GeV α χ2/d.o.f

|R|, NLO 0.95± 0.02 1.67± 0.05 2.7

|R̄|, LO 1.0± 0.02 1.88± 0.05 1.1

|R̄|, NLO 0.98± 0.02 1.80± 0.05 1.25

exponent α are somewhat smaller then the expected asymptotic power behavior obtained from the SCET

analysis: |R(s, t)| ∼ (−t)−2
. But for the discussed values of the momentum transfer −t � 2.5 − 7GeV2

the hard-collinear scale µhc �
√
ΛQ is still quite small. Therefore we expect that these empirical values

of α can be a result of the oversimplified choice of the fit formula in Eq.(122). The measurements of the

cross section for the higher values of −t can help to clarify this situation.
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term does not depend on energy s if we rewrite u in terms of s and scattering angle θ in the massless ap-

proximation. The weak logarithmic s-dependence is introduced by the QCD radiative correction through

the definition of the scale for the running coupling αs.

In Fig.10 (left plot) we show the numerical results for the asymmetry KLL as a functions of the

scattering angle θ. The solid red line corresponds to the leading-order approximation in Eq.(124) (massless

Klein-Nishina asymmetry). The dashed (blue) and dotted (black) lines show the numerical results for

the complete NLO expression (124) for the energies s = 6.9GeV2 and s = 20GeV2, respectively. The

data point correspond to s = 6.9GeV2 [12]. We see that the energy dependence of the NLO expression

remains quite a weak. Obtained estimates are larger then the experimental point but for this energy

and angle θ = 121.6o the value of the −u = 1.14GeV2 is still quite small. For clarity we show with the

help of the solid thick (blue) line the values of KLL in the kinematical interval where −t ≥ 2.5GeV2 and

−u ≥ 2.5GeV2 for s = 6.9GeV2. Keeping in mind the estimates of the cross section one can expect that

the power corrections for this kinematical region can still provide sizable numerical effect.
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Figure 10: The longitudinal asymmetry KLL as a function of scattering angle θ. Left plot: comparison

of the LO (red solid) and NLO results computed with s = 6.9, 20GeV2, (dashed and dotted lines, respec-

tively). The kinematical power corrections (PC) are neglected m = 0. Right plot: comparison of the

NLO results computed with (solid black and blue lines) and without kinematical power corrections. The

curves for the massless approximation are the same as on the left plot.

Therefore in order to estimate the possible effect from the power suppressed contributions we include

into consideration the kinematical power corrections in the same way as we did for the cross section

before. The numerical results are presented in Fig.10 (right plot). One can observe that the computed

power corrections provide a sizable effect for large angles (θ > 90o) and quite small for the θ ≤ 90o. We

see that their effect for energy s = 6.9GeV2 is quite large and negative bringing the curve in agreement

with the data point. One can also observe that their effect for large energy s = 20GeV2 and large angle

θ = 120o (−u = 4.5GeV2) is approximately by factor three smaller but it still remains quite sizable

numerically.

5 Discussion

We provided a detailed consideration of the QCD factorization for the WACS process. Using SCET

framework we proved that the leading-power or dominant contribution is described by the soft- and

hard-spectator scattering. For asymptotically large values of the Mandelstam variables the soft-spectator

contribution is strongly suppressed by the Sudakov logarithms but not by powers of a generic large scale

Q. In the region of moderate values of Q2 where the hard-collinear scale µhc ∼
√
QΛ is still quite small

this logarithmic suppression is weak and therefore one must include the soft-spectator contribution on the

same footing as the hard one. We provided the factorization formulas for the three amplitudes describing

the scattering when the nucleon helicity is conserved. The amplitudes corresponding to the helicity flip
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WACS phenomenology: longitudinal polarization KLL

KLL =
σR
� − σL

�

σR
� + σL

�
=

s2 − u2

s2 + u2
+

αs

π
CFK

NLO

LL

m=0

Does not  depend on s & R

m=0

with the kinematical power corr’s 

NK, Vanderhaeghen, to appear

data: JLab/Hall-A, 2004

⇒
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Conclusions
The QCD factorization approach is improved using SCET framework.  Hard- 
and soft-spectator contributions are included consistently. The coefficient 
functions Ci computed at LO and NLO order.

Theory

Ti(s
�
, t) = Ci(s

�
, t)R(s, t) +Ψ ∗

�
Hi(s

�
, t)− Ci(s

�
, t)

H2(s, t)

C2(s, t)

�
∗ Ψ

T2(s, t) = C2(s, t)R(s, t)
i = 4, 6

s� �= s!

Soft-overlap contribution is included in the one universal function     
which: 

R
 can be extracted from the data for the cross section
is universal that allows to use it in description of other 
reactions ( for instance, TPE)

 to compute the hard-spectator corrections
To improve the theory one needs:

to include the helicity flip amplitudes (KLS)
 to consider other processes

Ti(s, t) ≈ 0 i = 1, 3, 5

γ∗
⊥p → (π, ρ, ...)p (in progress) 24



Conclusions
Experiment: cross section
Current data allows to conclude that cross section dominates by soft-overlap
contribution 

|R̄|
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Figure 9: The extracted values of |R̄| as a functions of the momentum transfer obtained using the

leading-order (upper plot) and next-to-leading (bottom plot) order approximations for the hard coefficient

functions C̄i. The open squares (rhombs) show the LO (NLO) values extracted withm = 0 using Eq.(118).

The solid lines show the fit of the |R̄| with the formula in Eq.(122). The shaded area shows the 99%

confidence bands.

The other measured observables which are very helpful in order to clarify the underlying partonic

dynamics are given by the recoil polarizations KLL and KLS. They can be constructed for the circular

polarized photon (R,L) and longitudinal (�) or transverse (⊥) polarization of the recoiled proton. In

the current work we consider only the longitudinal polarization KLL because it does not depend on the

helicity flip amplitudes at the leading power approximation. Its definition reads

KLL =
σR
� − σL

�

σR
� + σL

�
. (123)

Computing this asymmetry with the help of the approximation Eq.(113) we obtain that the unknown

factor |R| cancel in the ratio and the asymmetry is defined only by the perturbative coefficients Ci.

Neglecting the all power corrections and using the next-to-leading expressions we obtain

KLL =
s2 − u2

s2 + u2
− αs

π
CF

1

(s2 + u2)
2

�
(t− s)u3

ln
2
[|u|/|t|]− (t− u)s3 ln2 [s/|t|]

+su2
(2t− s) ln [|u|/|t|]− us2(2t− u) ln [s/|t|]− π2

(s− t)u3
�
+O(α2

s), (124)

The leading-order contribution in this expression reproduces the well-known expression for the Klein-

Nishina asymmetry which describes the scattering on the point-like massless particles. Obviously, this
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New data will help: 
- to verify the description at larger s and -t  ( s-dependence! )

- to extract     in order to use in description of the other  
processes (TPE, comparison with the time-like region )

R
- reduce the effect of the power corrections
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Conclusions
Experiment: asymmetries

New data will help: 

term does not depend on energy s if we rewrite u in terms of s and scattering angle θ in the massless ap-

proximation. The weak logarithmic s-dependence is introduced by the QCD radiative correction through

the definition of the scale for the running coupling αs.

In Fig.10 (left plot) we show the numerical results for the asymmetry KLL as a functions of the

scattering angle θ. The solid red line corresponds to the leading-order approximation in Eq.(124) (massless

Klein-Nishina asymmetry). The dashed (blue) and dotted (black) lines show the numerical results for

the complete NLO expression (124) for the energies s = 6.9GeV2 and s = 20GeV2, respectively. The

data point correspond to s = 6.9GeV2 [12]. We see that the energy dependence of the NLO expression

remains quite a weak. Obtained estimates are larger then the experimental point but for this energy

and angle θ = 121.6o the value of the −u = 1.14GeV2 is still quite small. For clarity we show with the

help of the solid thick (blue) line the values of KLL in the kinematical interval where −t ≥ 2.5GeV2 and

−u ≥ 2.5GeV2 for s = 6.9GeV2. Keeping in mind the estimates of the cross section one can expect that

the power corrections for this kinematical region can still provide sizable numerical effect.
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Figure 10: The longitudinal asymmetry KLL as a function of scattering angle θ. Left plot: comparison

of the LO (red solid) and NLO results computed with s = 6.9, 20GeV2, (dashed and dotted lines, respec-

tively). The kinematical power corrections (PC) are neglected m = 0. Right plot: comparison of the

NLO results computed with (solid black and blue lines) and without kinematical power corrections. The

curves for the massless approximation are the same as on the left plot.

Therefore in order to estimate the possible effect from the power suppressed contributions we include

into consideration the kinematical power corrections in the same way as we did for the cross section

before. The numerical results are presented in Fig.10 (right plot). One can observe that the computed

power corrections provide a sizable effect for large angles (θ > 90o) and quite small for the θ ≤ 90o. We

see that their effect for energy s = 6.9GeV2 is quite large and negative bringing the curve in agreement

with the data point. One can also observe that their effect for large energy s = 20GeV2 and large angle

θ = 120o (−u = 4.5GeV2) is approximately by factor three smaller but it still remains quite sizable

numerically.

5 Discussion

We provided a detailed consideration of the QCD factorization for the WACS process. Using SCET

framework we proved that the leading-power or dominant contribution is described by the soft- and

hard-spectator scattering. For asymptotically large values of the Mandelstam variables the soft-spectator

contribution is strongly suppressed by the Sudakov logarithms but not by powers of a generic large scale

Q. In the region of moderate values of Q2 where the hard-collinear scale µhc ∼
√
QΛ is still quite small

this logarithmic suppression is weak and therefore one must include the soft-spectator contribution on the

same footing as the hard one. We provided the factorization formulas for the three amplitudes describing

the scattering when the nucleon helicity is conserved. The amplitudes corresponding to the helicity flip
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m=0 m≠0

Existing data-points corresponds to small value u=-1.1GeV2

⇒ sensitive to the power corrections

- more data are required to check the angle and energy dependence
- the data at larger values of s are less affected from the power corrections 
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