PWO₄ Studies for EIC Calorimeter

Carlos Muñoz Camacho

Institut de Physique Nucléaire d'Orsay

November 19, 2014 Jefferson Lab

Outline

BNL R&D funds for EIC (proposal submitted & approved last July)

Irradiation tests of PbF₂ crystals at IAC for DVCS (2010)

High resolution calorimetry

R&D proposal submitted to BNL in July 2014 (CUA, IPN-Orsay, CalTech and BNL)

Goal:

- Develop procedures to determine the quality of PbWO₄, regarding their light yield (resolution) and their radiation hardness.
- Study different methods of recovering radiation damage in crystals. Characterize their perfomances and applicability during experiments.
 (All quality crystals so far were produced by BTCP, out of bussiness since 2008)
 - New tcheque company (Cythur) is interested in performing R&D and try to provide high quality crystals

Funds & practical goals

• The proposal has been awarded \$80k for 1 year, renewable according to progress and needs.

Goals:

- Setup a test bench to measure transparency of PbWO₄ blocks
- Measure light yield of blocks
- Irradiation tests
- Test optical recovery (blue, infrared light), temperature recovery
- Initial blocks + PMTs could be borrowed from Giessen to get started
- New blocks could be ordered from Cythur early 2015
- A spectrometer to measure transparency to be purchased.

Tentative timeline

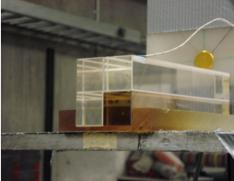
(Purchase of spectrometer)

- Set-up test bench: (Jan–Feb'15)
 (Purchase of new blocks)
- Transparency and light yield measurements on Giessen blocks: (Mar-Apr'15)
- Measurements on new blocks: (Jun-Jul'15)
- Investigate radiation damage and curing (?? optional this year) (IAC, ALTO-Orsay [50 MeV e 10 μ A]...)
- Simulations (counting rates, radiation doses, etc) for EIC setup (Jan-Sep'15)

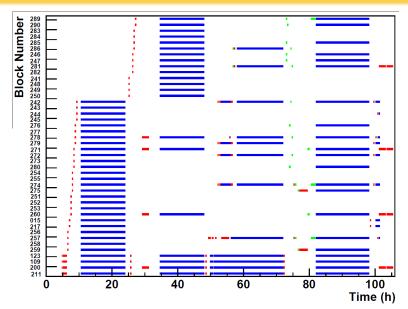
Master and/or PhD student can help with transparency measurements and analysis/simulation of data

Idaho Accelerator Center: irradiation setup

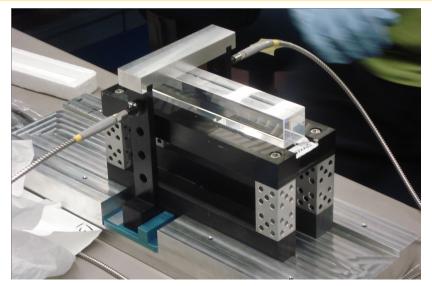

Beam energy: 20 MeV


Repetition rate: 100 Hz

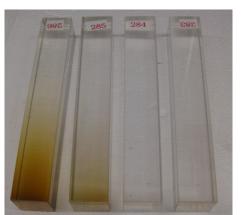
 I_{peak} : 111-112 mA/pulse

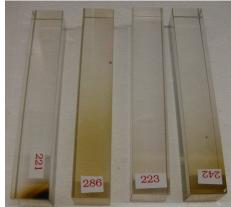

Pulse width: 100 ns

3.6 kGy = 360 krad in 20 min (fyi, NPS is expecting \sim 1 krad/h at the smallest angle)

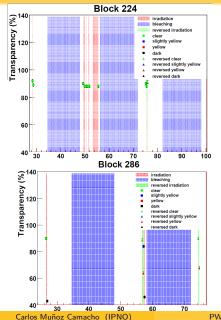


IAC tests: overview of irradiation/bleaching sessions

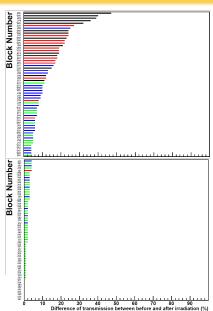

Transmittance measurements



Measurements performed at 2.5 cm from irradiated face


Visual inspection

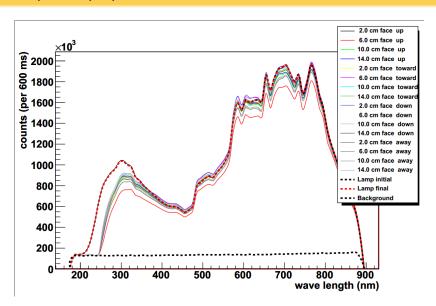

Very different response to 20 min of irradiation



Crystals: the good, the bad and the ugly...

Summary of results

Conclusions:


- A few minutes of irradiation are enough to observe large effects
- Large spectrum of radiation hardness observed
- Optical transmittance measurements correlate well with visual inspection

Poor man's quality requirement:

Discard as many blocks as spares you could afford...

Back-up

Backup: lamp spectrum

