SIDIS: challenges at low energies and opportunities at EIC

Nobuo Sato University of Connecticut EICUGM Washington DC, 2018

In collaboration with:

- O. Gonzalez
- T. Rogers
- B. Wang
- W. Melnitchouk

Semi inclusive deep inelastic scattering (SIDIS)

Process is dominated by one photon exchange with large virtuality $Q^2 \gg \lambda_{\rm QCD}$

Key question : How is p_h^{\perp} generated at short distances?

Semi inclusive deep inelastic scattering (SIDIS)

$$\frac{d\sigma}{dx \, dy \, d\Psi \, dz \, d\phi_h \, dP_{hT}^2} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \sum_{i=1}^{18} F_i(x, z, Q^2, P_{hT}^2) \beta_i$$

F_i	Standard label	β_i
F_1	$F_{UU,T}$	1
F_2	$F_{UU,L}$	ε
F_3	F_{LL}	$S_{ }\lambda_e\sqrt{1-\varepsilon^2}$
F_4	$F_{UT}^{\sin(\phi_h + \phi_S)}$	$ \vec{S}_{\perp} \varepsilon \sin(\phi_h + \phi_S)$
F_5	$F_{UT,T}^{\sin(\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \mathrm{sin}(\phi_h - \phi_S)$
F_6	$F_{UT,L}^{\sin(\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \varepsilon \sin(\phi_h - \phi_S)$
F_7	$F_{UU}^{\cos 2\phi_h}$	$\varepsilon \cos(2\phi_h)$
F_8	$F_{UT}^{\sin(3\phi_h-\psi_S)}$	$ \vec{S}_{\perp} \varepsilon \sin(3\phi_h - \phi_S)$
F_9	$F_{LT}^{\cos(\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \lambda_e\sqrt{1-\varepsilon^2}\cos(\phi_h-\phi_S)$
F_{10}	$F_{UL}^{\sin 2\phi_h}$	$S_{ }\varepsilon\sin(2\phi_h)$
F_{11}	$F_{LT}^{\cos \phi_S}$	$ \vec{S}_{\perp} \lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_S$
F_{12}	$F_{LL}^{\cos \phi_h}$	$S_{ }\lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_h$
F_{13}	$F_{LT}^{\cos(2\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_h-\phi_S)$
F_{14}	$F_{UL}^{\sin \phi_h}$	$S_{\parallel}\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_h$
F_{15}	$F_{LU}^{\sin \phi_h}$	$\lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h$
F_{16}	$F_{UU}^{\cos \phi_h}$	$\sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h$
F_{17}	$F_{UT}^{\sin \phi_S}$	$ \vec{S}_{\perp} \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_S$
F_{18}	$F_{UT}^{\sin(2\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_h-\phi_S)$

Bacchetta et al (2007)

- Different regions are sensitive to distinct physical mechanisms
- They encodes different aspects of nucleon structure and hadronization
- The challenge is to have a solid understanding of all the regions

Theory framework for current fragmentation

What determines small or large transverse momentum ?

 \blacksquare The formulation of $W+FO-\mathrm{ASY}$ is based on a scale separation governed by the ratio

 $q_{\rm T}/Q$

 \blacksquare It $q_{\rm T}/Q << 1$ then

 $\sigma \simeq \mathbf{W} \quad \mathbf{FO} - \mathbf{ASY} \simeq \mathbf{0}$

• It $q_{\rm T}/Q \ge 1$ then

 $\sigma \simeq \mathrm{FO} \quad \mathrm{W} - \mathrm{ASY} \simeq 0$

$$z = \frac{P \cdot p_h}{P \cdot q}$$
$$q_{\rm T} = p_h^{\perp} / z$$

Status of $p_{\rm T}$ dependent SIDIS phenomenology

- Most of $p_{\rm T}$ dependent SIDIS data has been studied using only W \rightarrow TMD distributions
- Little attention has been paid to incorporate FO in the analyzes
- FO is computed using collinear factorization with existing PDFs (CJ15) and FFs (DSS)

COMPASS: $l + d \rightarrow l' + h^+ + X$

COMPASS: $l + d \rightarrow l' + h^+ + X$

HERMES: $l + p \rightarrow l' + \pi^+ + X$

HERMES: $l + p \rightarrow l' + \pi^+ + X$

- What are we missing?
- perturtative parts : higher order corrections, power corrections, threshold corrections
- non-perturbative parts : PDFs, FFs

SIDIS in collinear factorization

• For $p_{\rm T}$ integrated @ LO:

$$\frac{d\sigma}{dxdQ^2dz}\sim \sum_q e_q^2 f_q(x,\mu)~d_q(z,\mu)$$

• For $p_{\rm T}$ differential @ LO:

$$\frac{d\sigma}{dxdQ^2dzdp_{\rm T}} \sim \sum_{q} e_q^2 \int_{\frac{q_{\rm T}^2}{Q^2} \frac{xz}{1-z} + x}^{1} \frac{d\xi}{\xi - x} f_q(\xi, \mu) \ d_q(\zeta(\xi), \mu) \ H(\xi)$$

Note:

- gluon PDFs/FFs are involved in $p_{\rm T}$ differential but not in the integrated case
- For $p_{\rm T}$ differential, the $q_{\rm T}$ factor in the integrand provides point-by-point in $q_{\rm T}$ constraints on PDF/FF
- Lets try a **global analysis** of PDF+FF using these data!

The global analysis I: the data sets

- constraints on PDFs
- DIS: SLAC, BCDMS, NMC, HERA (NC, CC)
- **DY**: E866 *pp*, *pd*
- constraints on FFs
- **SIA** π^{\pm} : TASSO, TPC, TPC(c), TPC(b), TOPAZ, SLD, SLD(c), SLD(b), ALEPH, OPAL, OPAL(c), OPAL(b), DELPHI, DELPHI(b), BABAR, BELLE, ARGUS
- constraints on PDFs and FFs
- **SIDIS** p_{T} dependent: HERMES π^+ , π^-
- **SIDIS** $p_{\rm T}$ integrated: COMPASS π^+ , π^-

The global analysis I: DIS results

The global analysis I: DY results

16 / 30

The global analysis I: SIA results

17 / 30

The global analysis I: SIDIS $q_{\rm T}$ integrated

The global analysis I: SIDIS q_T dependent

• $q_{\rm T}/Q > 1$ cut has been imposed

The global analysis I: SIDIS q_T dependent

• $q_{\rm T}/Q > 1$ cut has been imposed

The global analysis I: PDFs and FFs

• Gluon FFs peaks at much larger z

The global analysis II: the data sets

- constraints on PDFs
- DIS: SLAC, BCDMS, NMC, HERA (NC, CC)
- **DY**: E866 *pp*, *pd*
- constraints on FFs
- SIA: TASSO, TPC, TOPAZ, SLD, ALEPH, DELPHI
- constraints on PDFs and FFs
- **SIDIS** p_{T} dependent: COMPASS h^+ , h^-

The global analysis II: DIS results

The global analysis II: DY results

24 / 30

The global analysis II: SIA (h^{\pm}) results

The global analysis II: SIDIS $q_{\rm T}$ dependent

26 / 30

The global analysis II: SIDIS $q_{\rm T}$ dependent

27 / 30

The global analysis II: PDFs and FFs

• Gluon FFs peaks at much larger z

Lessons:

- SIDIS q_{T} spectrum offers new constraints on FFs
- TMD analyses must include simultaneous analysis of the collinear distributions \rightarrow JAM

Summary and outlook

$$\frac{d\sigma}{dx \, dy \, d\Psi \, dz \, d\phi_h \, dP_{hT}^2} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \sum_{i=1}^{18} F_i(x, z, Q^2, P_{hT}^2) \beta_i$$

F_i	Standard label	β_i
F_1	$F_{UU,T}$	1
F_2	$F_{UU,L}$	ε
F_3	F_{LL}	$S_{\parallel}\lambda_e\sqrt{1-\varepsilon^2}$
F_4	$F_{UT}^{\sin(\phi_h + \phi_S)}$	$ \vec{S}_{\perp} \varepsilon \sin(\phi_h + \phi_S)$
F_5	$F_{UT,T}^{\sin(\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \mathrm{sin}(\phi_h - \phi_S)$
F_6	$F_{UT,L}^{\sin(\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \varepsilon \sin(\phi_h - \phi_S)$
F_7	$F_{UU}^{\cos 2\phi_h}$	$\varepsilon \cos(2\phi_h)$
F_8	$F_{UT}^{\sin(3\phi_h-\psi_S)}$	$ \vec{S}_{\perp} \varepsilon \sin(3\phi_h - \phi_S)$
F_9	$F_{LT}^{\cos(\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \lambda_e\sqrt{1-\varepsilon^2}\cos(\phi_h-\phi_S)$
F_{10}	$F_{UL}^{\sin 2\phi_h}$	$S_{ } \varepsilon \sin(2\phi_h)$
F_{11}	$F_{LT}^{\cos \phi_S}$	$ \vec{S}_{\perp} \lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_S$
F_{12}	$F_{LL}^{\cos \phi_h}$	$S_{ }\lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_h$
F_{13}	$F_{LT}^{\cos(2\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_h-\phi_S)$
F_{14}	$F_{UL}^{\sin \phi_h}$	$S_{\parallel}\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_h$
F_{15}	$F_{LU}^{\sin \phi_h}$	$\lambda_e \sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_h$
F_{16}	$F_{UU}^{\cos \phi_h}$	$\sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h$
F_{17}	$F_{UT}^{\sin \phi_S}$	$ \vec{S}_{\perp} \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_S$
F_{18}	$F_{UT}^{\sin(2\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_h-\phi_S)$

- The apparent disagreement between data and FO can be resolved by tunning FFs
- It provides for the first time the possibility to describe *F*_{UU} in the full W + FO ASY
- This is important as all the structure functions are typically provided in a form of asymmetries A_i = F_i/F_{UU}