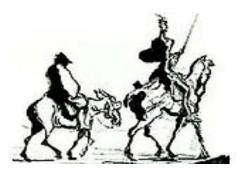


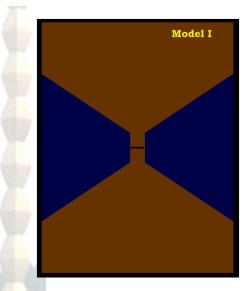
HCPS Report (aka "Homework #2")

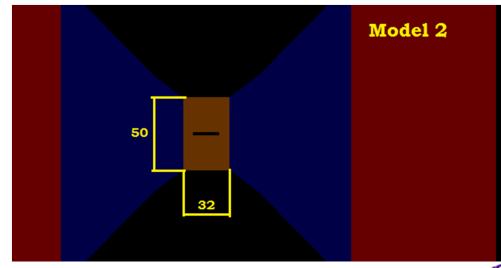
Gabriel Niculescu (JMU)

Outline:

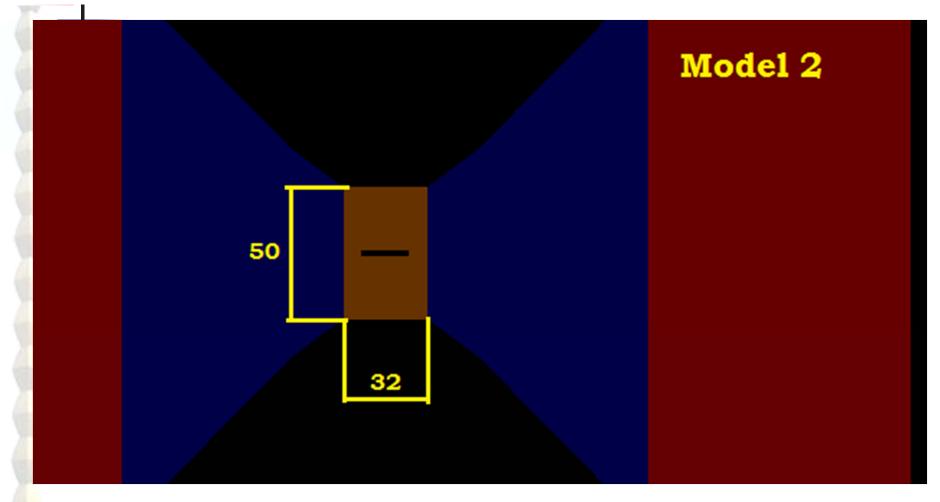

- **4** Charge
- **4** Results
- **Quo Vadis? (aka ... GN's currency reference)**

- > Define basic HCPS geometry
- Simulate it (G4, fluka) concentrating on:
 - > Prompt Radiation
 - > Activation*
 - > Photon beam Spot Size & intensity
 - Power Deposition, Cooling, heat transp., temperature (in the central region)
- Beam: E = 11.5 GeV electrons, I = 2.6 uA, (30kW)
 1x1 mm raster



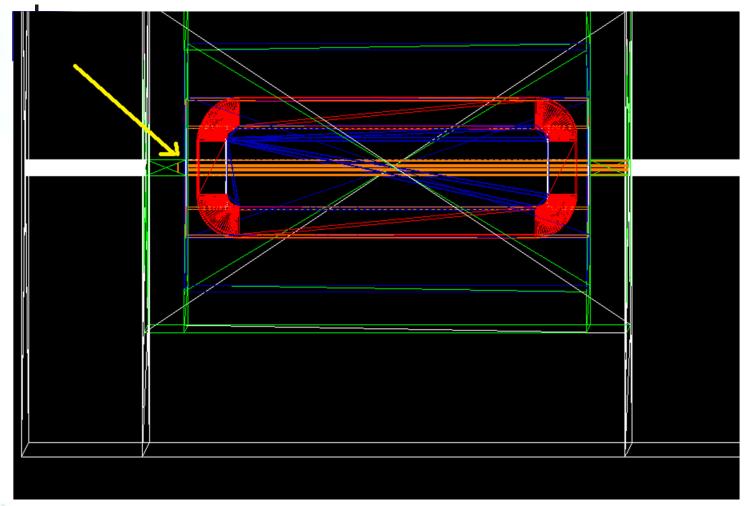


- > GN's JMU setup: Same as last time...
- > Two versions of the magnet:
 - Small bore (16x34 mm), 1000 mm long (field map BW)
 - Larger bore (32x50 mm), 970 mm long (ditto)
 - > Both with a single central slit
 - > W Powder shielding + Borated Poly (i.e. just like HW#1)
 - Radiator in/outside magnetic field


Gabriel Niculescu – CPS follow-up meeting, JLab, 5/11/2017

> Close-up view

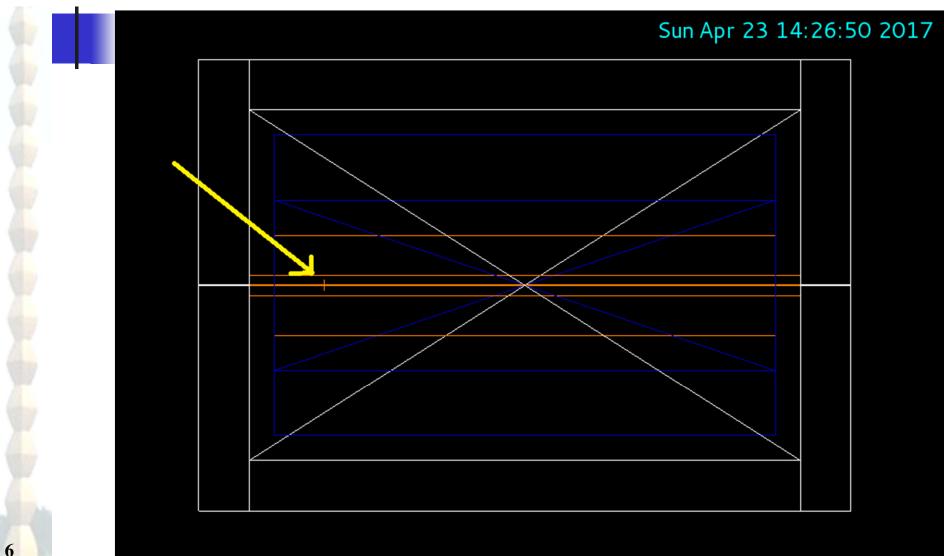
Gabriel Niculescu – CPS follow-up meeting, JLab, 5/11/2017

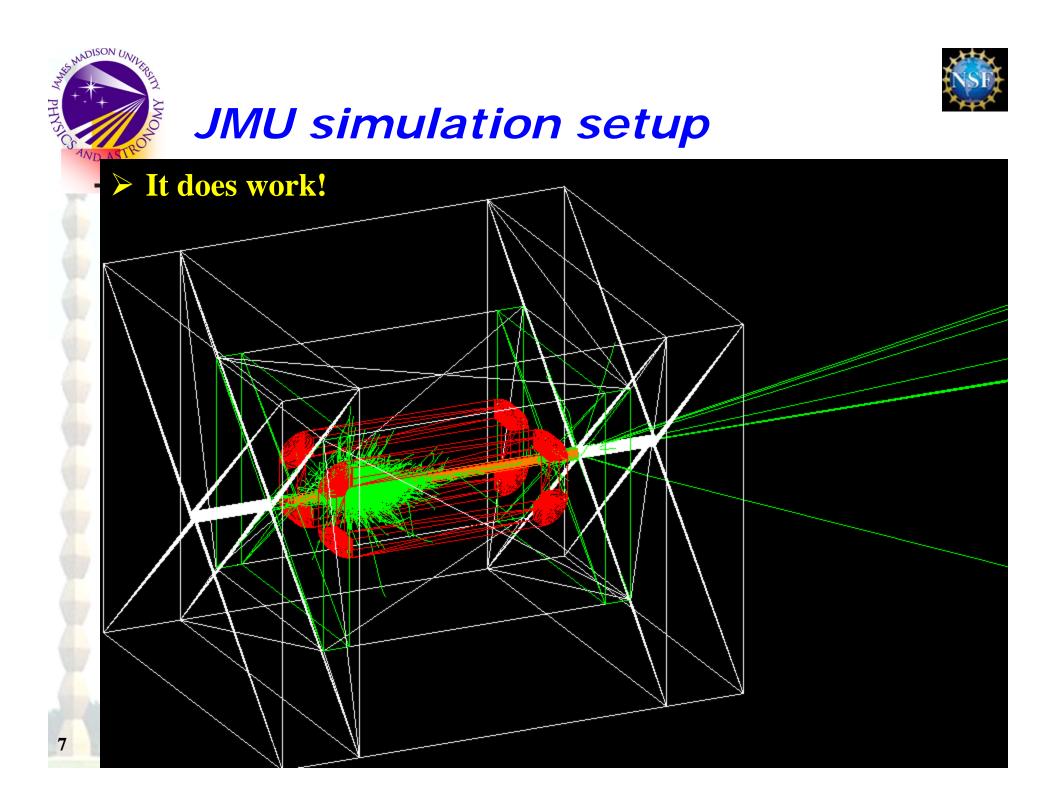


5

JMU simulation setup

Side view. Radiator outside


Gabriel Niculescu – CPS follow-up meeting, JLab, 5/11/2017



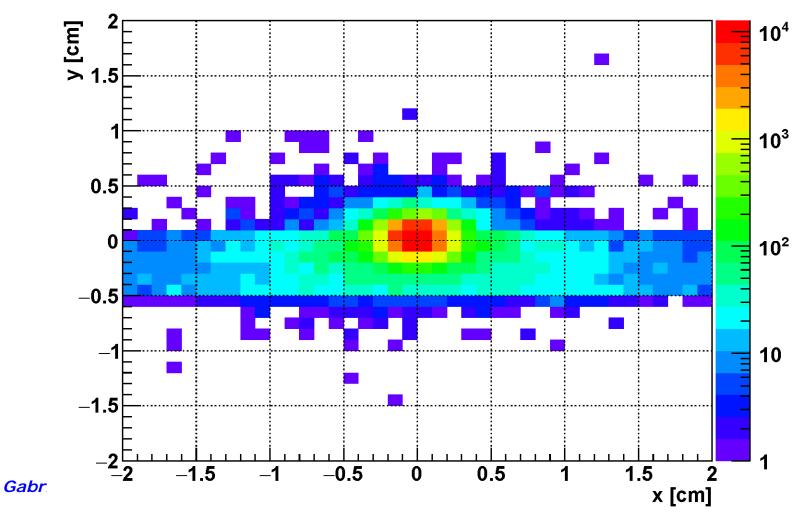
> Side view. Radiator in field.

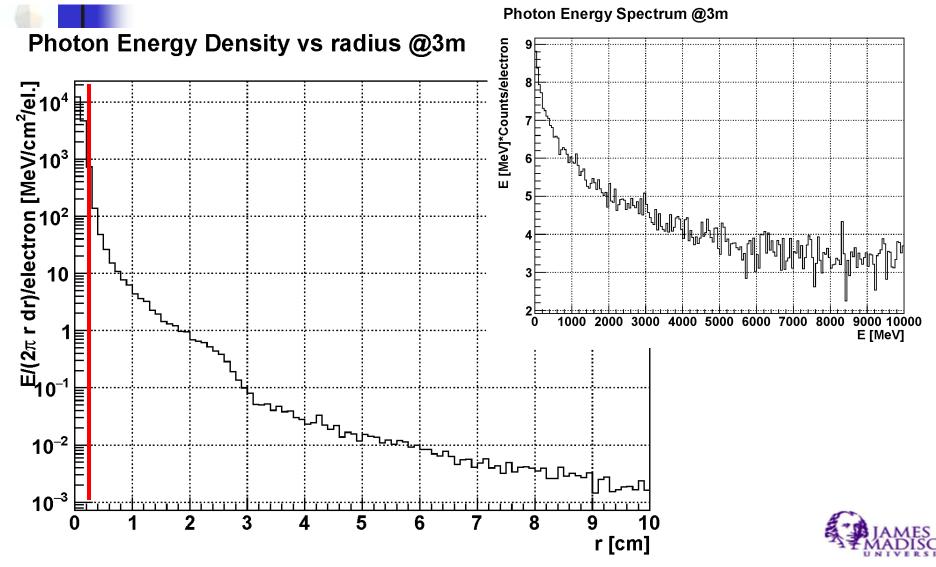
Radiation Level Results

> Results not dissimilar to HW#1.

	at 3 m	from ce	enter						
	Pavel			Igor			Gabrie	I	
	DINRE	G/GEAN	IT3	MCNP	5		GEANT4		
Dose Rates [rem/h]	n	g	total	n	g	total	n	g	total
3m Fe	146	0.44	146.4	12.5	0.13	12.63	123.2	0.56	123.8
3m Fe+PolyB	0.8	2.8	3.6				0.284	0.56	0.844
1.5m W	13	0.06	13.1	4.5	0.03	4.53	6.34	0.33	6.67
1.5m W+PolyB	2.7	0.003	2.7				1.76	1.28	3.04

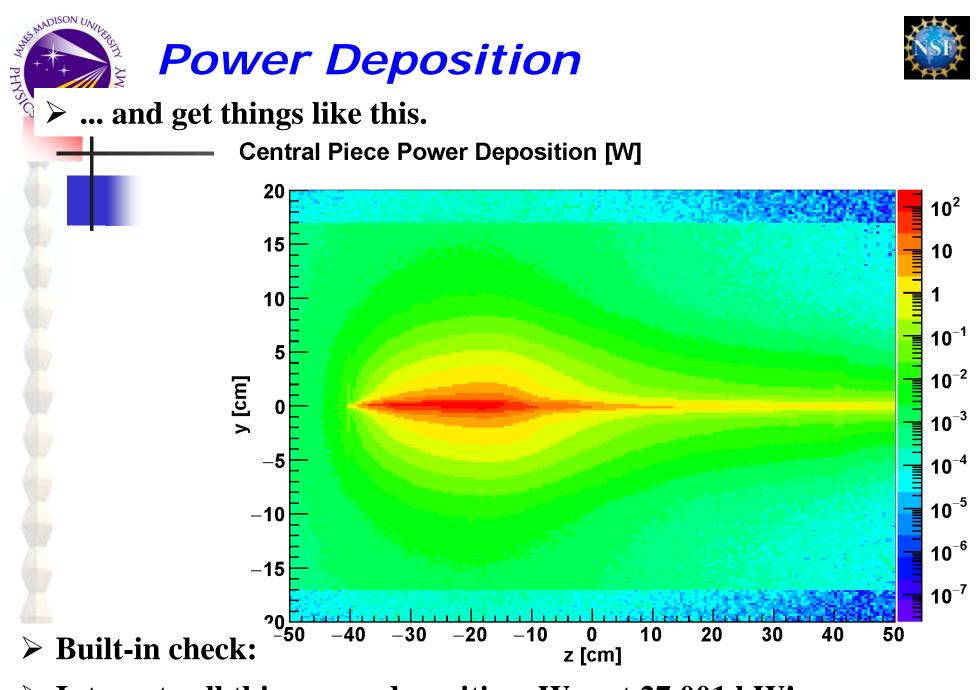
- **≻** 30 +10 Shielding: 5.58 rem/h
- > 1.5 W+Poly (from last time): 3.04 rem/h
- ➤ 40+10, 30+20: still processing...
- Activation simulation not pursued at this time. Same mats. as before so no surprises expected.

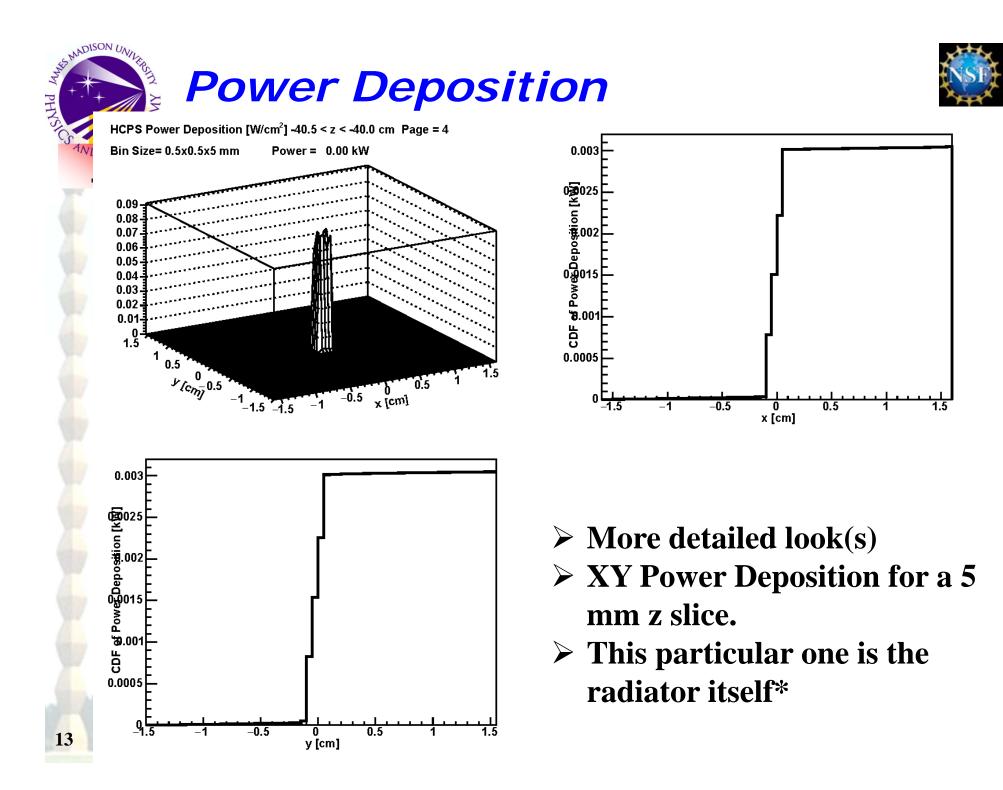


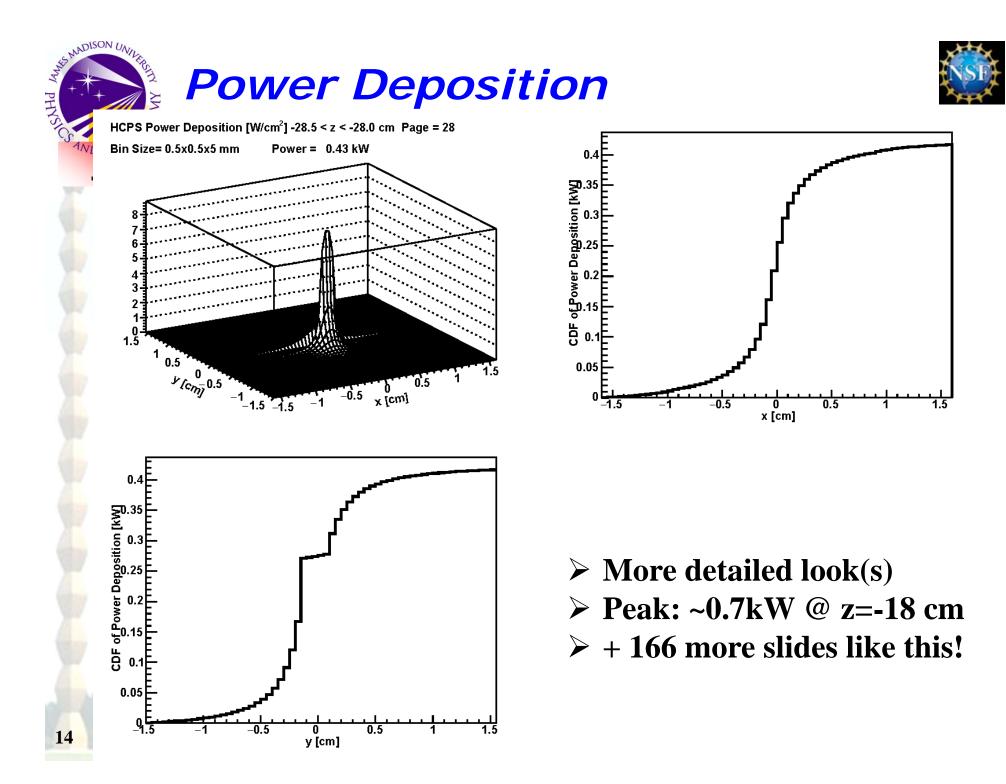

> Photon beam at 3 m from center (3.4 m from radiator).

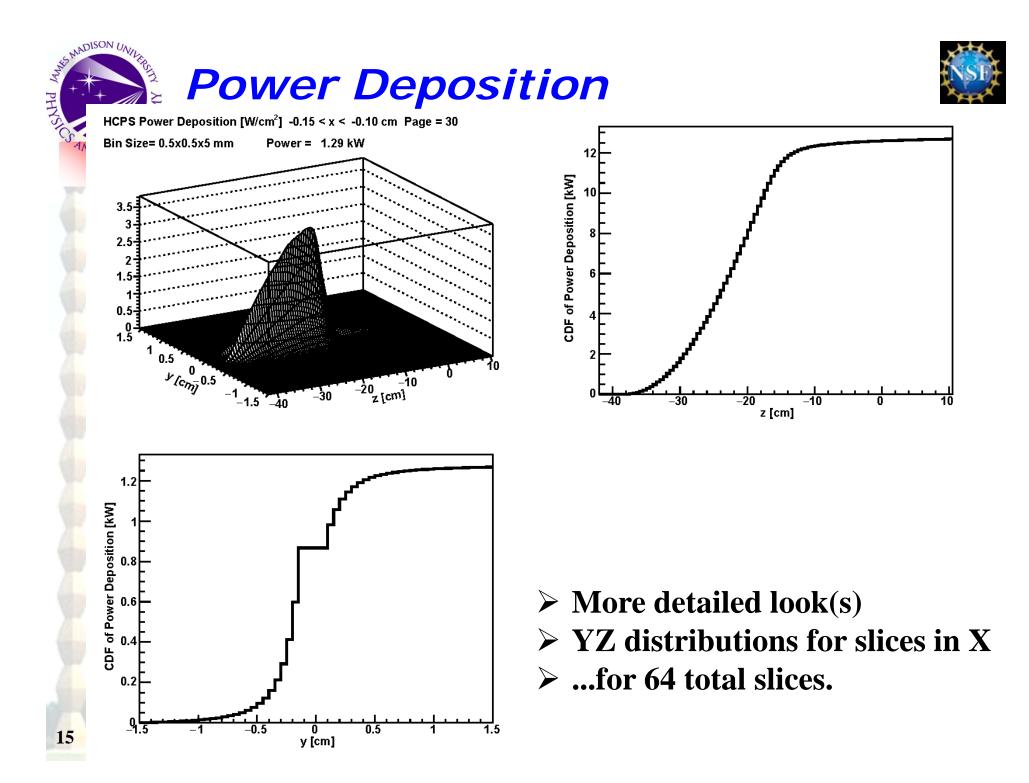
Photon Energy Density [MeV/cm²/electron] @3m

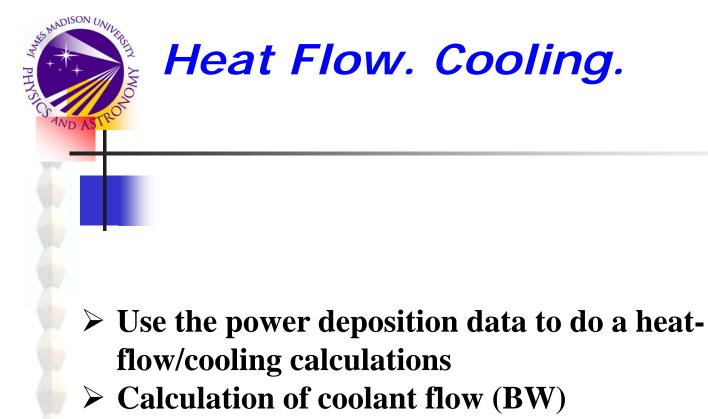
> Photon energy distribution. Beam intensity.


11

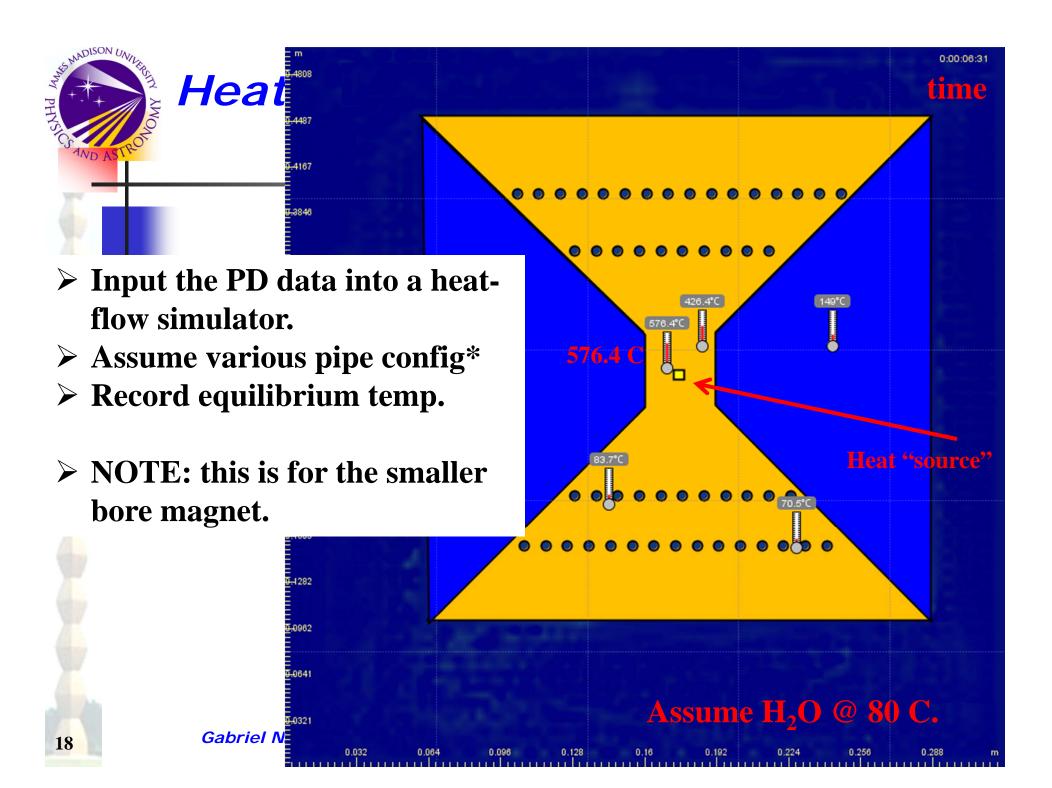

Power Deposition


- > To collect power deposition in the central piece of the HCPS:
- > Modify "standard" G4 code to have smaller step size in CP.
- > 100 um vs 700 um
- ➤ ~eV range IR cutoff
- > YES, it does take awhile to run!!
- > Collect eDep data in a 0.5x0.5x5 mm mesh in the CP.
- > Analyze G4 output to get the power (density) deposited...





Integrate all this power deposition. We get 27.001 kW! (10% radiator)



> 2D heat transport for z-slices of the CP region (GN)

DISON U			1		F 1					
AND ISON UNIVERSIT			Units		Units		Units			
11 SIT	d				mm	0.019685	ft			
	L	10	m	10000	mm					
AMOO AMOO	epsilon					0.000005	ft			
	nu	0.00001216								
	Coil Power	15	kW		L					
AND ASTR				1			1			
			$2 \sigma \Lambda P$	7		2.51				
	_	V = -	$-2\sqrt{\frac{2g\Delta P}{0.433}}$	$\frac{a}{10}\log_{10}$	+	(-			
1974			V 0.433	L	$3.7d^+d$	$2g\Delta P d$				<u>.</u>
				(v	V 0.433 L				-
							/			
	1.	()[a gpn	$\left(\frac{t}{2}\right) = v \frac{\pi d^2}{t}$	-			
	1	$2 \log_{10} \frac{\varepsilon}{2 \pi}$	+		^q circu	$(t)^{-1} 4$				
	\sqrt{f}	3.74		$\Delta P d$		(11	$\pi d^2 (a)$	gal	sec	
			v V 0.4	133 L)		$= v \frac{s}{sec}$	$-\frac{1}{4}(u^2)$	$\times \frac{gal}{0.1337 ft^3} \times 60$) min	
		(10				
		E	2.51				$Re = \frac{vd}{v}$		3.8P	
		3.7d	$d \int 2g\Delta P$	d			$\frac{n}{v}$ –		$\Delta T = \frac{3.01}{a}$	
			$\nu \sqrt{0.433}$						4	
			1	/						
		$\int 2g\Delta P d$					Ļ	+		
	DeltaP	V 0.433 L	+	+	f	v	Re	a	DT	
	(psi)	(ft/sec)	(no units)	(no units)		(ft/sec)		(gpm)	(deg.C)	
\ -	30	1.63619567	0.001016	5.98598	0.027908	9.794235	15855.25	1.337681753	42.61103	
\rightarrow Manageable H ₂ 0	35	1.76729331	0.000946	6.048238		10.68901	7303.75	1.459889005	39.04406	
	40	1.88931602	0.000889	6.101889	0.026858	11.5284	18662.58	1.574531(24	36.20126	
Π	45	2.00392225	0.000842	6.148984	0.026 48	12.32209	1 947.43	1.682931354	33.86946	
flow and ΔT .	50	2.11231952	0.000803	6.190921	0.026 091	13.0772	2 169.84	1.786064648	31.91374	
	55	2.21541941	0.000769	6.228695	0.025775	13.79917	22338.59	1.88467(139	30.24402	
	60 65	2.3139301	0.000739	6.263041	0.025494	14.49224 15.1598	23460.55	1.979328035 2.070501398	28.79765 27.52955	
	70	2.40841481 2.49933016	0.000712 0.000689	6.294513 6.323544	0.02:239	15.80462	24541.22 25585.09	2.15857 746	26.40635	
	75	2.5870525	0.000668	6.350475	0.02 796	16.42901	26 95.87	2.24384 749	25.40277	
	80	2.67189633	0.000649	6.375581	0.02 601	17.03489	27 76.69	2.32659 875	24.49927	
typical pressure	85	2.7541277	0.000632	6.399087	0.024421	17.6239	2 530.2	2.40704 032	23.68048	
cypical pressure	90	2.83397403	0.000616	6.421178	0.024 253	18.19745	29 58.68	2.48538 464	22.93411	
	95	2.91163153	0.000601	6.44201	0.024097	18.75676	30 <mark>364.11</mark>	2.56176 <mark>9</mark> 72	22.25024	
	100	2.98727092		6.461713	0.02395	19.30289	31248.2	2.63635925	21.62073	
	105	3.0610418		6.480401		19.83678	32112.48	2.709276988		
	110	3.13307617				20.35925	32958.28	2.780636188	20.49891	
	115	3.20349117	0.000553			20.87106	3 786.81	2.850537(93	19.99623	
	120	3.27239133	0.000542			21.37285	34599.13	2.919071772	19.52676	
	125 130	3.33987042 3.40601289	0.000533 0.000524			21.86523 22.34872	35396.2 36178.9	2.9863196 7 3.052354582	19.08704 18.67411	
	130	3.40001209	0.000524			22.82382	36948.01	3.117243207	18.28539	
	140	3.53458662	0.000507		0.02312	23.29097	37704.26	3.181046081	17.91863	
17 Gabriel Niculescu -	145	3.59715053		6.60261	0.022939	23.75058	38448.28	3.243818563	17.57188	
	150	3.65864473	0.000492			24.20302	39180.7	3.305611396	17.24541	

- Two magnet options explored. Also two diff. pos. for the radiator. Several shielding thicknesses.
- With enough W + PolyB the HCPS behaves (rad.-wise) as the 1.5m W sphere from last time.
- **Beam spot small, suitable for WACS (other exp.) work.**
- > Power deposition in CP mapped in great detail.
- Heat flow/coolant flow calculations/simulations carried out.
- > CP temperature stabilizes at an acceptable value.
- **Finish simulation of shielding options & rad. position. Fluka.**
- Heat calculation for larger bore magnet.

