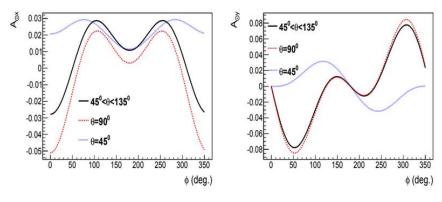

Beam Target Spin Asymmetries for Transversely Polarized Timelike Compton Scattering

Brannon Semp, Supervised by Marie Boer

Relevance of BTSA


BTSA shows access to all real CFFs. Extraction of Re E is the most difficult, but is currently poorly constrained so any measurements could be useful

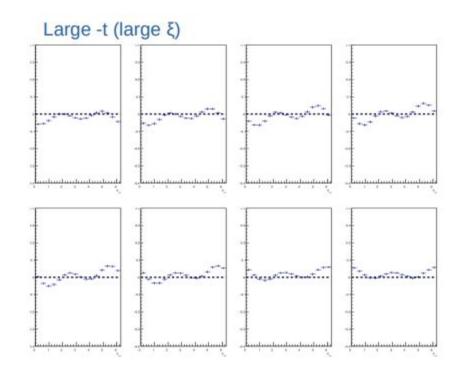
Ф=0°

Φ=90°

Note that the integrated asymmetry is very similar to the asymmetry at 90° (Highest TCS vs BH). This allows us to use the integrated asymmetry to measure TCS.

 ξ = 0.2, -t = 0.4 GeV² and Q² = 7 GeV²

Projected (ideal) BTSA distributions Evolutions of the shapes vs Φ , bins in Φ_s from 0 to π at intermediate ξ and for 2 bins in t Low -t (intermediate ξ) Large -t (intermediate ξ) sign change $0W \Phi_s$ large Φ_s


-Harmonic structure of BTSA mostly depends on t and $\boldsymbol{\xi}$ bins

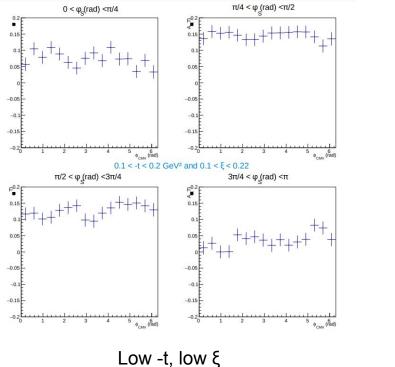
-BH doesn't cancel, nor is it TCS "only". Harder to interpret but any information is a major input to models and especially for discriminating Double Distribution "types" vs other kinds (strongly differ on Re CFF)

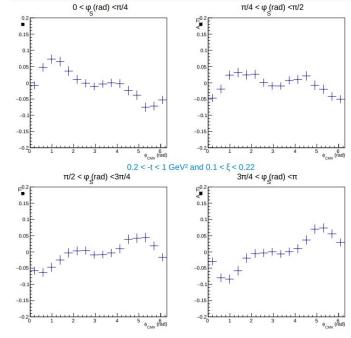
-Shape also strongly dependent on $\boldsymbol{\xi}$ (compares to right panel of last slide)

-Very fast evolution of real part of amplitudes with $\boldsymbol{\xi},$ unlike for the imaginary part

-Importance of selecting the right binning in $\xi \mbox{ \& } t$

Binning

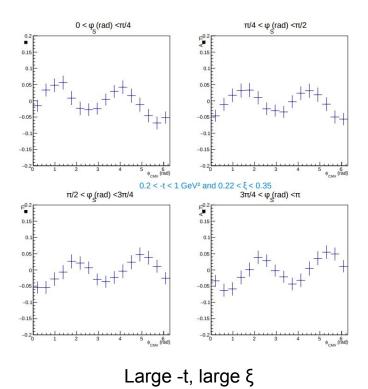

Because of the large uncertainty associated with BTSA, larger bins were used then for TSA

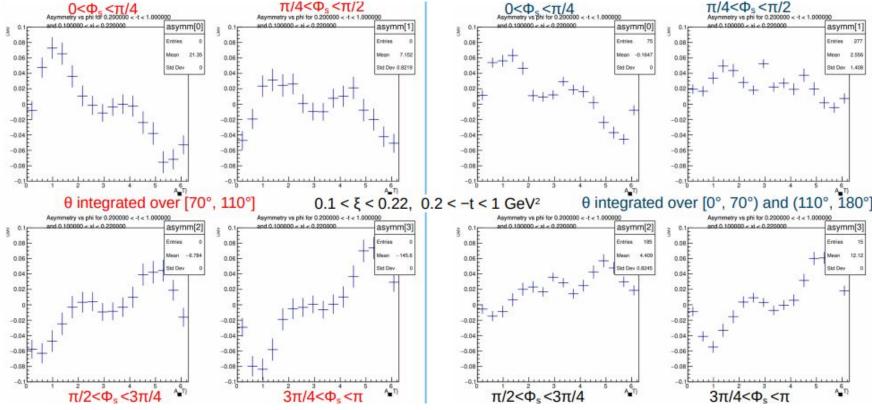

Instead of the 7 kinematic bins in (t, ξ , Q'²) and 16 bins in Φ_s used for TSA, 3 kinematic bins in (t, ξ) and 4 bins in Φ_s were used. The same acceptance cuts were also used, with the exception of θ which was narrowed to [70°,110°] in order to target the region with more TCS

Systematic Uncertainties for BTSA

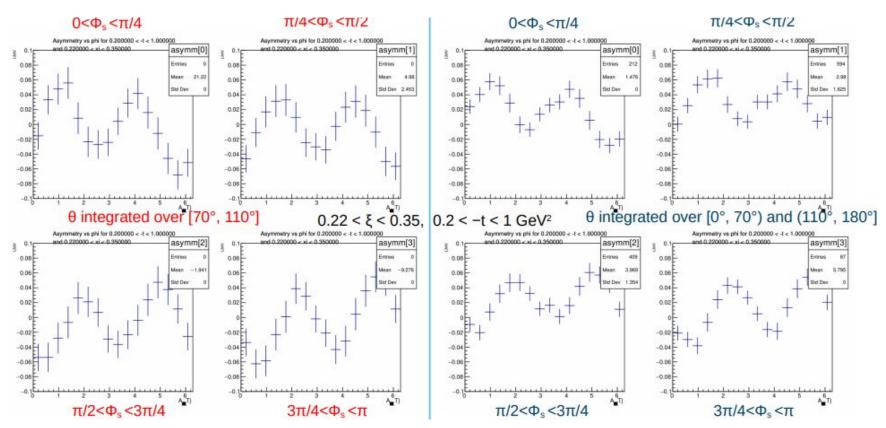
Target Polarimetry	27%
Beam Polarimetry	1%
Background	5%
Calorimeter	2%
Photon Resonance	<1%
Total	~27.5%

Projected Results with New Binning




Large -t, low ξ

Statistical uncertainties are represented and the histograms include dilution and polarization transfer factors.


New binning still shows the evolution of harmonic structure with change in t and ξ

Comparing results integrated inside [70°,110°] vs Integrated outside range

Asymmetries integrated inside [70°, 110°] show more extreme negative values compared to outside, which is only BH

Asymmetries integrated inside [70°, 110°] show more extreme negative values compared to outside, which is only BH

- Asymmetries integrated around 90°, where there is more TCS, show greater magnitude of negative values

- Integrated asymmetry is different enough from just BH to extract physics

-It may be prudent to do left/right asymmetries for statistical reasons instead of full Φ distribution

Summary

-BTSA analysis is complementary to currently proposed experiment and would require no additional beam time

-Could be included in the proposal or could do a run group proposal

-Even if we only analyze left/right asymmetries, there is no existing data about real CFFs from TCS so it would still provide valuable information

-Analysis of BTSA will be more difficult then TSA because BH dominates