Crystal characterization

Vladimir Berdnikov

on behalf of NPS collaboration

NPS/CPS Collaboration Meeting (JLab, 2/1/19)

Outline

- NPS calorimeter requirements
- Quality assurance of CRYTUR and SICCAS crystals

Visual inspections and surface quality

Visual inspections with green laser

Transmittance

Light Yield

Radiation Hardness measurements

Rejection rates

• Beam tests

3x3 prototype

Comcal/NPS prototype

• Outlook path to completion

NPS requirements

PbWO₄ crystal specification

Parameter	Unit	NPS Required	COMCAL/FCAL	PANDA specifications
	phe/M			
Light Yield at RT	eV	≥15	≥9.5	≥16
LY uniformity between the blocks (%)		<10 <mark>(<20)</mark>		
LY(100ns)/LY(1us)	%	>90	>90	>90
Longitudinal Transmission at				
λ = 360nm	%	≥35 <mark>(≥25)</mark>	≥10	≥35
λ = 420nm	%	≥60	≥55	≥60
λ = 620nm	%	≥70	≥65	≥70
Transverse Transmission and LY uniformity along the crystal	%	10		
Inhomogeneity of Transverse Transmission				
Dλ at T=50%	nm≤	≤5	≤6	≤3
Induced irradiation absorption coefficient dk				
at λ =420nm and RT, for integral dose >10Gy	m-1	<1.1 <mark>(<1.5)</mark>	<1.5	≤1.1
Mean value of dk	m-1	≤0.75		≤0.75
Tolerance in Length	μm	≤±100	+0/, -100	≤±50
Tolerance in sides	μm	≤±50	+300, -0.	≤±50
Surface polished, roughness Ra	μm	≤0.02		
Tolerance in Rectangularity	degree	≤0.1		≤0.01
Mo contamination	ppm	<10		<1
La, Y, Nb, Lu contamination	ppm	<40ppm <mark>(≤100)</mark>		≤40
Also require no defects like cracks_ch	ins dots	alue snots ch	nemical films old lahe	els and

Also require no defects like cracks, chips, dots, glue spots, chemical films, old labels and etc. since these impact NPS crystal performance

QA and measurements status

Vendor	Samples	Delivered
SICCAS	460	FY 2017
CRYTUR	100	FY 2018

Experimental investigation	CRYTUR	SICCAS
Visual inspections including 5mW green laser	100%	100%
Dimension measurements	100%	100%
Transmittance measurements	37%	100%
Light yield measurements	30%	70%
Radiation resistance, sample of 10 pieces	to be done	done
Beam tests (additional)	to be discussed	done; data analysis ongoing
Chemical and surface analysis few samples (optional)	done	done

Dimension measurements

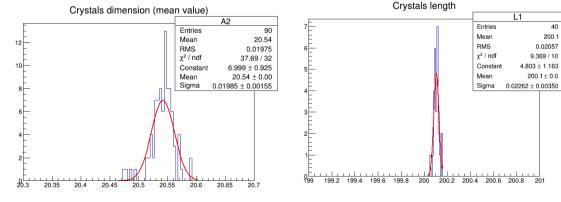
Mitutoyo tool ~ 7um accuracy on AA granite

CRYTUR dimensions:

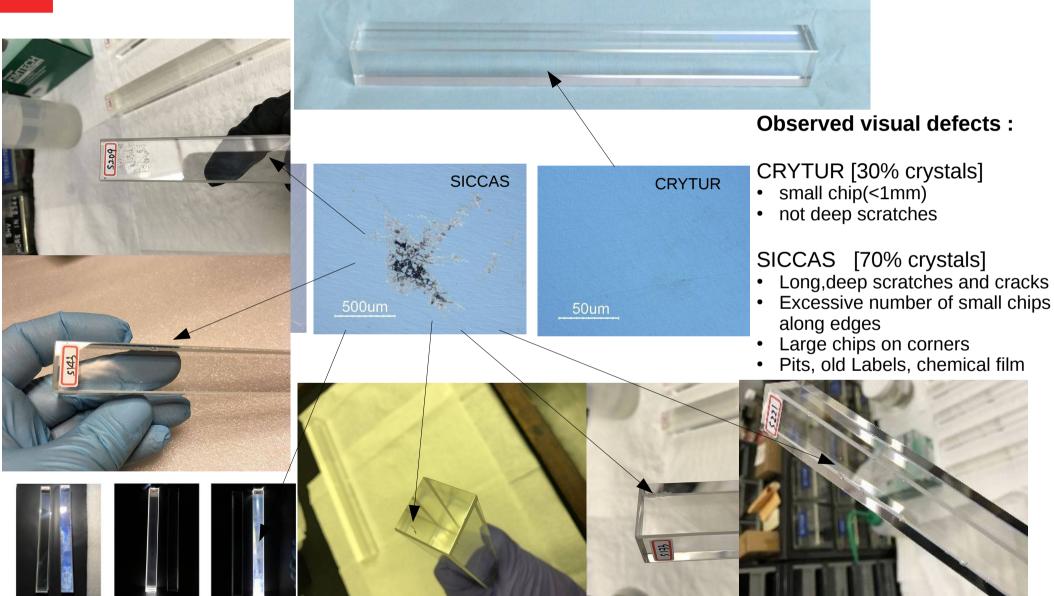
X,Y 20.46±0.01 mm Z 200.0±0.01 mm

20.46x20.46x200.0 mm³


No rejections

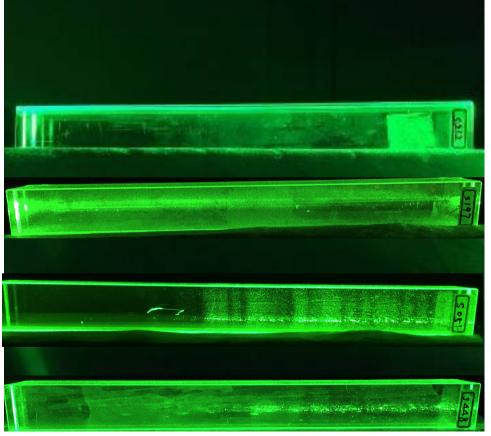

SICCAS dimensions:

X,Y 20.54±0.02 mm Z 200.1±0.02 mm


20.54x20.54x200.1 mm³

3 crystals rejected (size ~20.1)

Visual inspection and surface quality

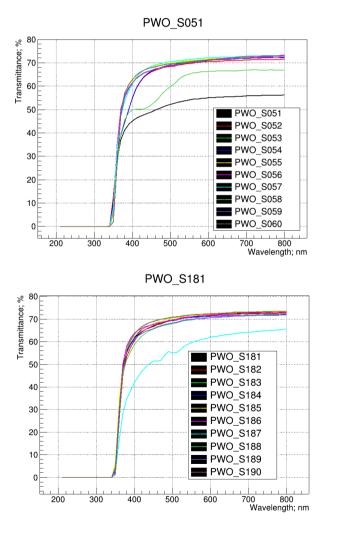


Visual inspection with green laser

SICCAS

CRYTUR

CRYTUR:


• Some small dispersion bubbles in bulk much less than 25% of crystal volume

SICCAS:

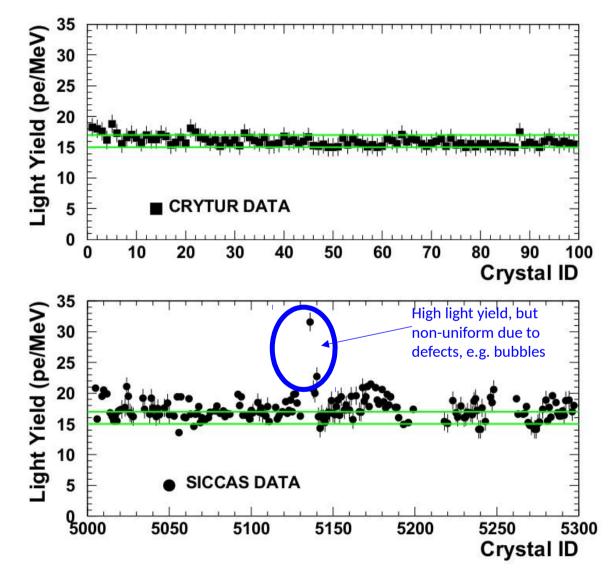
- Medium dispersion bubbles in bulk up to 50% of crystal volume
- Excessive number of bubbles (>50% volume) in bulk ("X-mas tree")
- Chemical film on surface ("Milky crystals")
- Traces of old labels or markings on surface("Shabby")

Transmittance measurements

SICCAS

CRYTUR Wavelength (nm) ~ _ _ _ 0 - CRYTUR 001 ---- CRYTUR 002 90 CRYTUR 003 ---- CRYTUR 004 80 CRYTUR 005 70 60 50 40 30 - SICCAS 5061 20 10 0_____ 300 600 700 800 400 500 Longitudinal Transmittance (%)

PerkinElmer Lambda 950 spectrometer


CRYTUR:

- Uniform transmittance spectra
- Better transmittance compare to SICCAS

SICCAS:

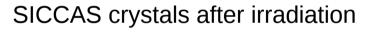
- Nonuniform transmittance spectra
- Correlation between bad spectrum and visual defects
- Some bad spectrum due bad composition and doping

Light Yield measurements

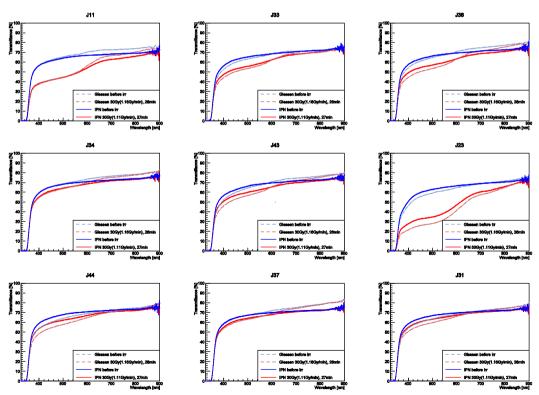
CRYTUR:

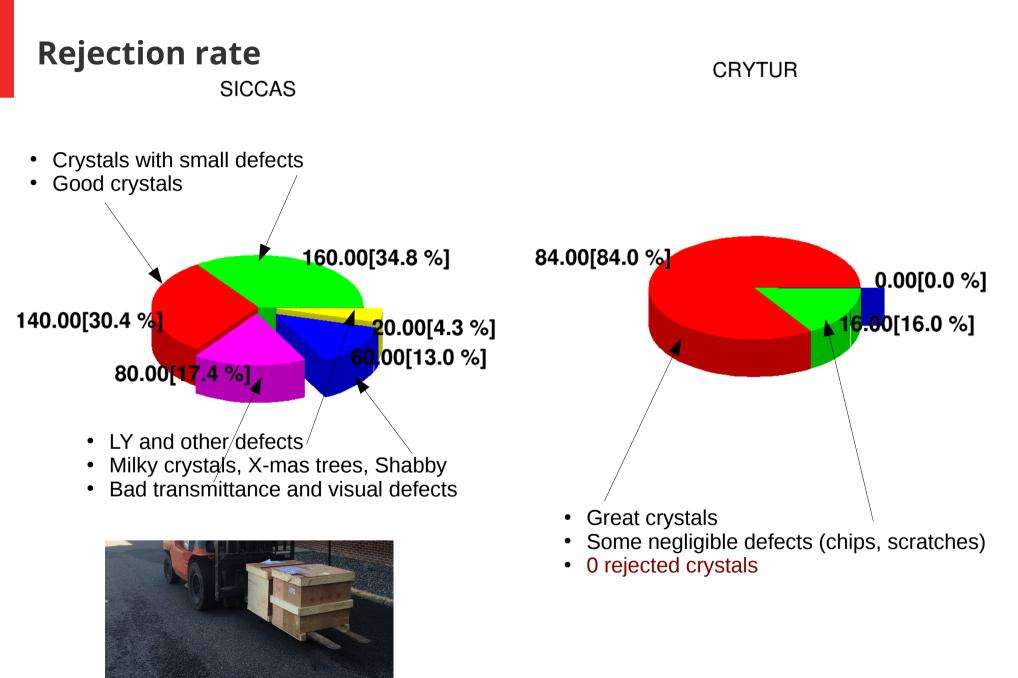
• Light yield is uniform

SICCAS:

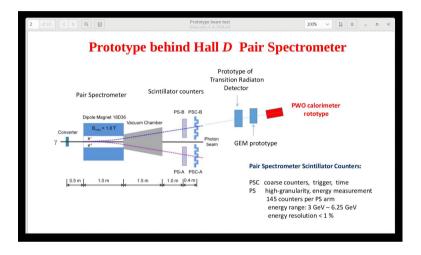

- Large variations in light yield
- Non-uniformity of light yield within one crystals due to defects in bulk

Radiation hardness

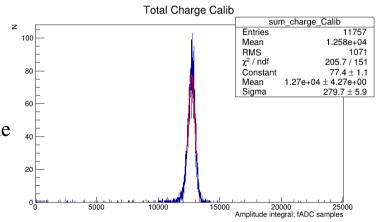



High intensity Co60 source at IPN-Orsay 30 Gy total dose, at a rate of ~1Gy/min Fricke dosimetry solution to measure actual dose

Crystal transmittance before and after irradiation



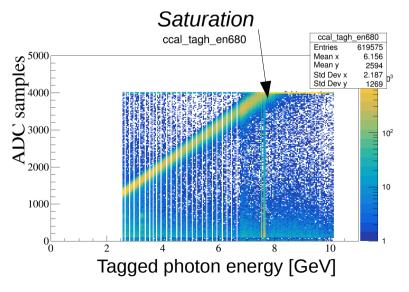
160 crystals rejected !

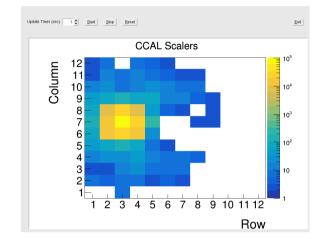

3x3 prototype beam test

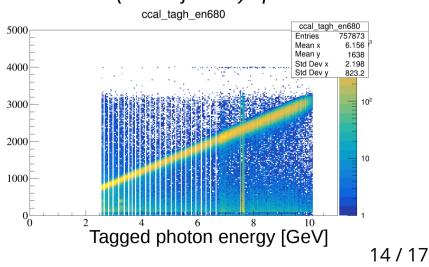
3x3 Prototype tested in HallD during spring run 2018

- Integrated into HallD global DAQ and data recorded with GlueX PS trigger
- Selected 4.6GeV electrons going through the center of the middle module
- HV was set to 750V to make sure FADC amplitudes were within 1V dynamic range
- σ(E)/E~2.2 %
- https://logbooks.jlab.org/entry/3563789

COMCAL/NPS prototype

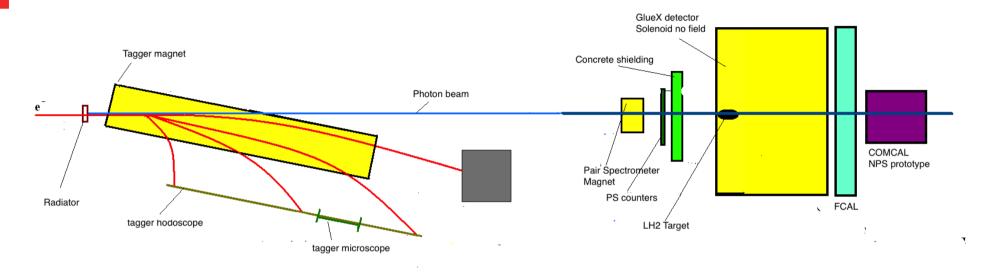


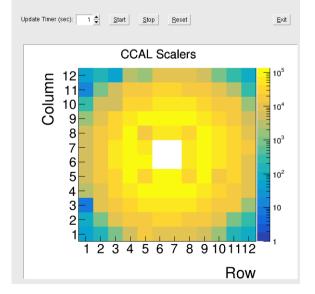

- 12x12 Matrix (140 crystals)
- Primex module assembly design
- NPS HV divider
- 250 fADC readout
- Environment control (temperature,humidity, light sensors)
- Water cooling (~17C)
- Monitoring system consisting of LED and α-source
- Moving platform (insertion into beam line for calibration)



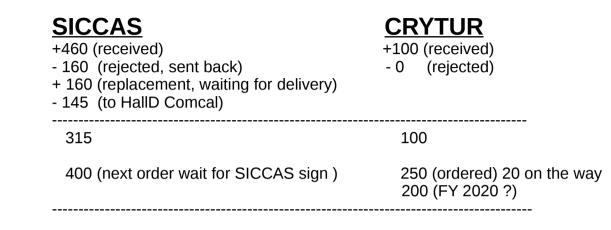
Commissioning phase I. Low intensity photon beam

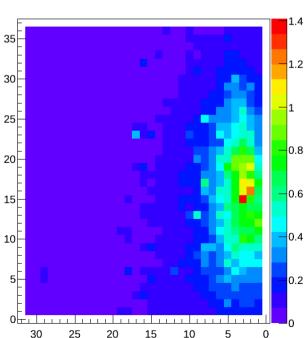
- Beam energy 10.3 GeV
- 1-3nA 5mm photon beam in center of each sell
- Position of the center of each cell with 1mm precision
- Tagged photons with ~0.4% energy resolution
- FADC saturation observed
- HV reduced to 650V (still saturate couple of channels)
- Data analysis is ongoing
- See Alex Somov talk for details
- https://logbooks.jlab.org/entry/3633958
- https://logbooks.jlab.org/entry/3639399



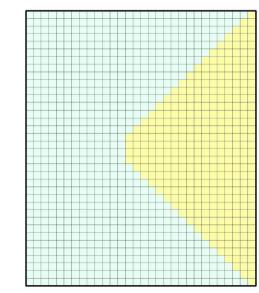


Good (HV adjusted) spectrum

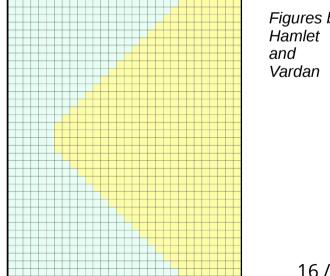

Commissioning phase II. Production mode


- Beam energy 10.3 GeV
- Amorphous 10⁻⁴ R.L. radiator, 750 um converter, beam current (100 - 350) nA.
- PrimEx nominal current 320 nA assuming runs with the 10⁻⁴ R.L. radiator
- Trigger type: FCAL & CCAL, total energy deposition > 2 GeV
- Data analysis is ongoing
- See Alex Somov talk for details
- https://logbooks.jlab.org/entry/3635391

Path to completion



Possible stacking options according to simulated dose rate



Doses [Gy/(uA*h)] (Eb=11GeV, magnet, 0.6TM field)

340 CRYTUR + 740 SICCAS

592 CRYTUR + 488 SICCAS

Figures by

Summary

- Received 460 crystals from SICCAS and 100 from CRYTUR
- QA methods is established and experience gained
- Characterized SICCAS and CRYTUR crystals, feedback to vendors
- More crystals purchased, expected delivery starting summer 2019
- Prototype including real readout system and temperature monitoring assembled and tested with photon beam in HallD
- Developing analysis/calibration software for prototype beam test program
- Continue prototype data taking and data analysis to determine calorimeter actual performance parameters