PbWO₄ Transmissions at λ =370, 420, 500 and 550 nm

30 April 2015

 We have analyzed Longitudinal and Transverse transmission data measured before irradiation in Idaho and ~30 days after irradiation. All SICCAS crystals (10 from spring 2014 and 5 from December 2014) Transmissions were measured by using Carl Zorn's setup in ARC building.

Longitudinal Transmission

	Before Irradiation					About 30 days after Irradiation					
$Block \hspace{-0.5em}\backslash \lambda$	370	420	500	550	λ:	= 370	420	500	550		
1	41.2	63.7	69.6	71.0							
2	35.3	60.8	66.0	68.6	→	36.4	46.6	51.4	55.0	1.5Mrad	
3	44.1	66.1	72.4	73.2	→	53.5	66.4	71.7	73.0	840kRad	
4	42.1	65.1	71.1	72.4							
5	40.8	64.4	70.8	72.4							
6	39.0	64.1	70.7	71.7	→	52.0	65.3	70.4	71.7	840 kRad	
7	35.9	64.4	71.0	71.6							
8	42.2	64.5	70.7	71.6	→	53.7	53.8	69.6	70.7	1.5 MRad	
9	40.0	64.5	70.5	71.8	→	53.2	65.0	69.2	70.2	840 kRad	
10	35.3	65.2	71.4	72.0							
11	37.0	60.6	66.7	68.4							
12	56.8	70.9	74.0	74.8							
13	39.2	62.6	68.9	70.2							
14	48.8	65.6	68.2	59.2							
15	44.4	65.6	71.5	72.5							
							$\lambda = 370$	420	500	550	
Block #2 after Irradiation and IR+Blue curing:							38.5	48.7	53.0	57.0	

Comments:

- Transmission vary from the block to block, higher spread at lower wavelength. (At λ =370 nm T \approx 35-57%, while at λ =420 nm T \approx 61-71%, and at λ =500 nm T \approx 66-74%).
- Longitudinal Transmission for crystal #14 show unexpected behavior above λ ~500 nm
- Strong effect of radiation degradation have been observed for crystal #2
- 12 hours IR plus 3 hour Blue LED curing does not recovered crystal #2 transmission.

Transverse Transmission

• Transmission in transverse direction (2 cm thickness) has been measured at several distances from the face of the crystals (5, 15, 25, 35, 45 and 55 mm). The presented data are for 5 mm distance from the face of the crystals.

	Before Irradiation				About 30 days after Irradiation					
Block\λ	370	420	500	550	$\lambda = 37$	0 420	500	550		
1	66.3	70.2	73.0	73.7						
2	65.3	68.4	71.2	72.2	→ 59	.2 62.6	65.3	67.5	1.5 Mrad	
3	68.5	71.7	74.1	74.7	→ 64	.7 68.1	71.2	72.1	840 kRad	
4	67.7	70.1	72.1	73.0						
5	64.1	68.7	71.0	72.2						
6	100.0	99.9	100.0	100.0	→ 65	.6 69.2	72.0	73.6	1.5MRad	
7	65.8	69.6	72.2	73.1						
8	69.4	72.3	74.0	74.6	→ 65	.6 69.4	72.2	73.6	1.5MRad	
9	64.1	68.2	71.3	72.3	→ 58	.1 63.0	65.9	67.6	840 kRad	
10	65.0	69.8	72.2	73.2						
11	68.6	70.9	72.9	74.0						
12	67.7	71.1	73.5	74.2						
13	65.5	68.8	71.4	72.6	15mm	1				
14	66.6	69.6	71.9	73.2						
15	67.8	70.6	72.9	73.5						

Comments:

- -Transverse transmissions (before irradiation) for the crystal #6 look very strange, more likely there was some mistake in beam positioning or calibration of the device.
- -Spread between transverse transmission data for different crystals are much less than it was observed for the longitudinal transmissions.
- -Small residual degradation effect (\sim 10%) after \sim 30 days of irradiation has been observed for the crystals #2, 3, 6, 8 and 9.