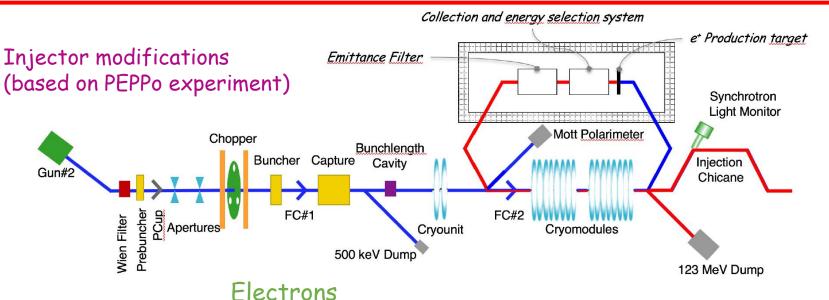

DVCS with positrons and NPS (proposal to PAC48)

Physics goals and motivation:

- ✓ Precise determination of the absolute photon electro-production cross section
- ✓ Clean separation of DVCS² and DVCS-BH interference
- ✓ More stringer constraints on CFFs by combining
 e⁻ & e⁺ data
- Same experimental configuration as approved experiment E12-13-010 (exactly)
- Expected positron beam momentum spread comparable with current electron beam
- Positron beam emittance about a factor of 2 larger than current electron beam
- No additional systematic uncertainties expected due to the use of positrons

Same kinematics settings as approved E12—13-010 with electrons



$x_{ m Bj}$	0.2			0.36					0.5			0.6					
$Q^2 (\text{GeV})^2$	2.0		3.0	3.0		4.0 5		5.5	3.4		4.8		5.1 6.0		6.0		
$k \; (\text{GeV})$	6.6	8.8		1	6.6 8.8		11	8.8	1	1	8.8	11		6.6	8.8	11	
k' (GeV)	1.3	3.5	5.7	3.0	2.2	4.4	6.6	2.9	5.1	2.9	5.2	7.4	5.9	2.1	4.3	6.5	5.7
$\theta_{\mathrm{Calo}}\left(\mathrm{deg}\right)$	6.3	9.2	10.6	6.3	11.7	14.7	16.2	10.3	12.4	7.9	20.2	21.7	16.6	13.8	17.8	19.8	17.2
D_{Calo} (m)	6		4	6		3		4	3	4				3	3		
$\sigma_{M_X^2}({ m GeV}^2)$		0.1	7	0.22	0.3	13	0.12	0.15		0.19	0.09 0.11		0.09				
$I_{\mathrm{beam}} (\mu A)$																	
Days	1	1	3	1	2	3	2	3	4	13	4	3	7	7	2	7	14

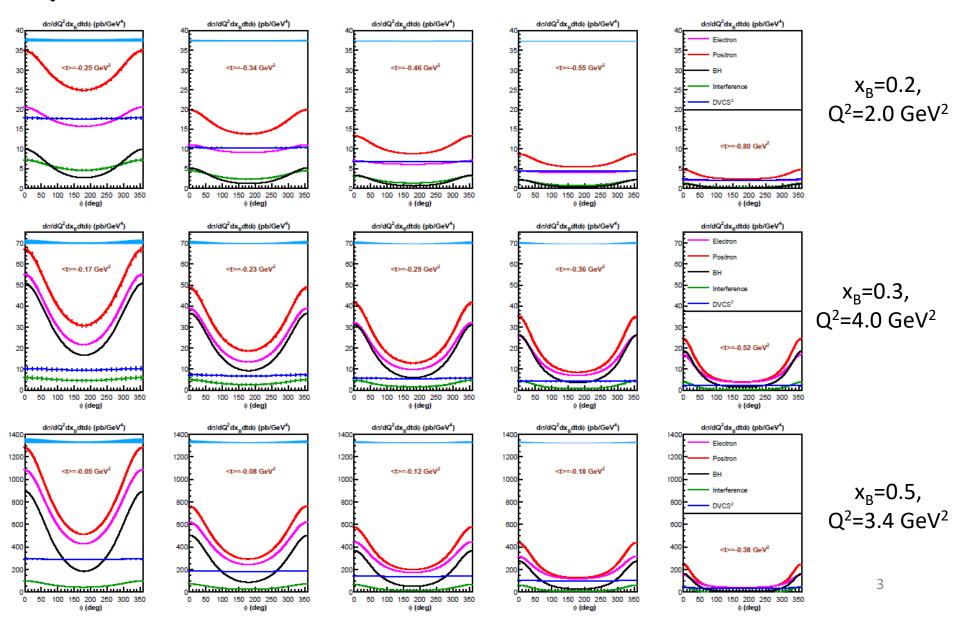
77 days, >5 μ A of positrons (unpolarized) Positron data: 25% of statistics of electron data

Proposal draft: https://www.overleaf.com/read/qfhqnnmgghhz

Positron production and transport

Dominated by damping in the LINACS

Dominated by synchrotron rad. in Arcs

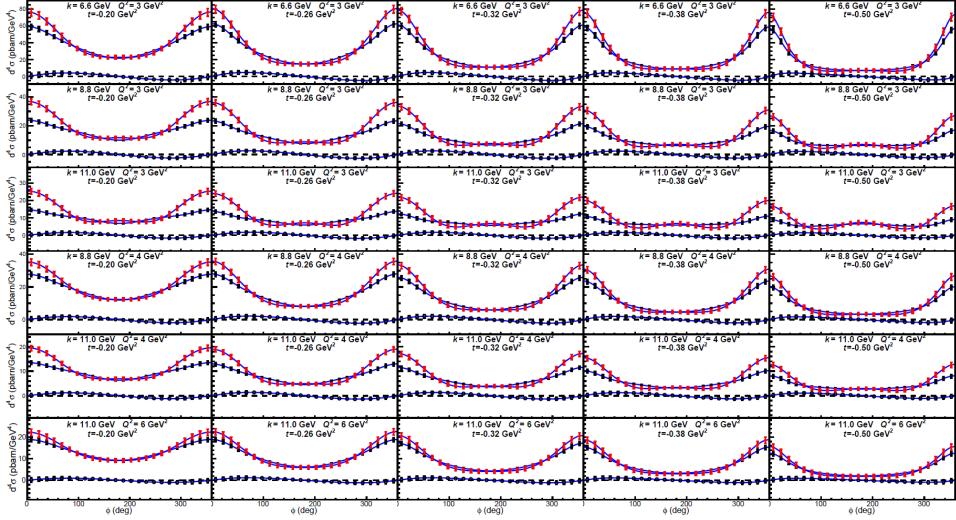

2.0011 0110								
Area	δp/p	ϵ_{x}	ϵ_{y}					
	[x10 ⁻³]	[nm]	[nm]					
Chicane	0.5	4.00	4.00					
Arc 1	0.05	0.41	0.41					
Arc 2	0.03	0.26	0.23					
Arc 3	0.035	0.22	0.21					
Arc 4	0.044	0.21	0.24					
Arc 5	0.060	0.33	0.25					
Arc 6	0.090	0.58	0.31					
Arc 7	0.104	0.79	0.44					
Arc 8	0.133	1.21	0.57					
Arc 9	0.167	2.09	0.64					
Arc 10	0.194	2.97	0.95					
Hall D	0.18	2.70	1.03					

Positrons

Area	δp/p	ε_{x}	ϵ_{y}		
	[x10 ⁻³]	[nm]	[nm]		
Chicane	10	500	500		
Arc 1	1	50	50		
Arc 2	0.53	26.8	26.6		
Arc 3	0.36	19	18.6		
Arc 4	0.27	14.5	13.8		
Arc 5	0.22	12	11.2		
Arc 6	0.19	10	9.5		
Arc 7	0.17	8.9	8.35		
Arc 8	0.16	8.36	7.38		
Arc 9	0.16	8.4	6.8		
MYAAT01	0.18	9.13	6.19		

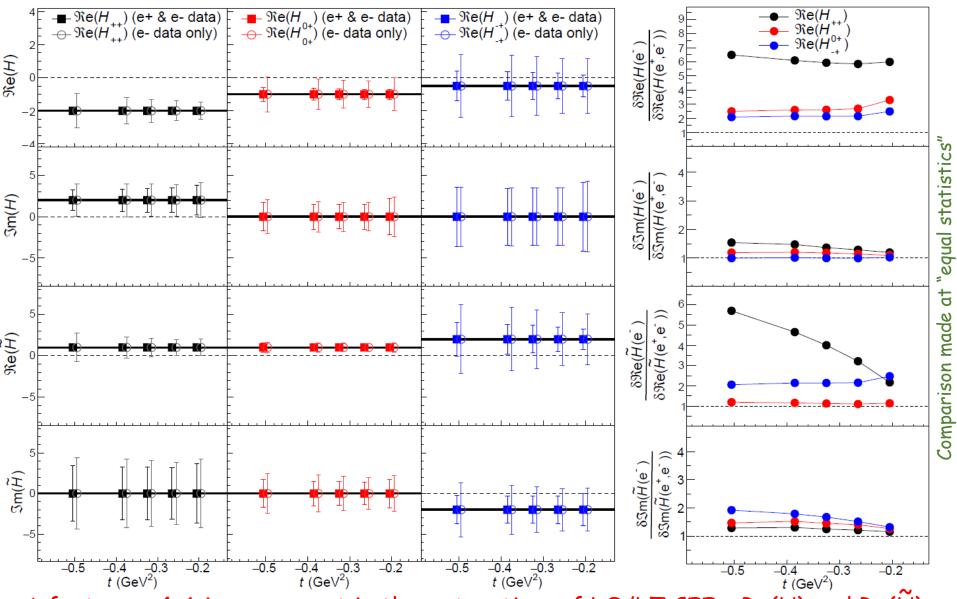
Separation of DVCS² and BH-DVCS interference

Projections based on the KM15 model (Kumericki and Mueller, 2015)



Impact on Compton Form Factors (CFFs) extraction

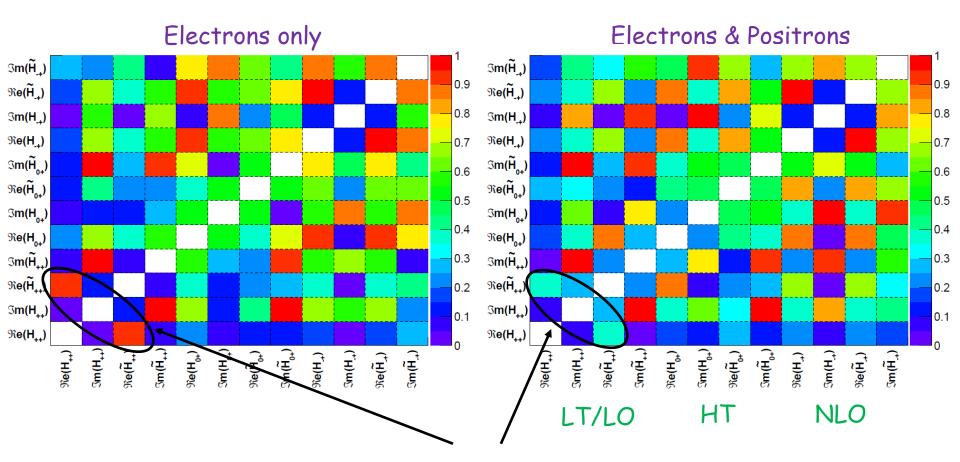
- ✓ Combined fit of all electron data from approved experiment E12-13-010 (helicity-dependent AND helicity-independent cross sections)
- Fits include LO & LT CFFs, but also +1 helicity-flip CFFs ("HT") and +2 helicity-flip CFFs ("NLO")


k = 6.6 GeV Q² = 3 GeV

Cross sections generated with CFFs values fitted to 6 GeV data

Fits and analysis by M. Mazouz (U. of Monastir)

DVCS with positrons and NPS (proposal to PAC48)


A factor or 4-6 improvement in the extraction of LO/LT CFFs Re(H) and Re(H)

(factor of ~2 for HT and NLO)

Correlation coefficients (t=-0.26 GeV²)

Correlations between different CFFs are significantly improved by a combined fit with positrons

$$|\rho_{i,j}| = \left| \operatorname{cov}[\mathbb{F}_i, \mathbb{F}_j] / (\sigma_i \sigma_j) \right|$$

Much better separation of H & Ht CFFs at LT/LO

Summary and timeline

- > Positrons will help to cleanly separate DVCS2 and BH-DVCS interference
- > Strong impact on CFFs fits and extraction

- Proposal draft available <u>here</u>
 (an updated version will be circulated next week by email)
- > PAC deadline: June 22