Monte-Carlo studies for TCS: projection of observables and uncertainties

Marie Boër, April 5, 2018 NPS meeting

Monte Carlo and kinematic cuts

Generated kinematic:

- 7.5 < E_y < 11 GeV, implemented bremsstrahlung spectra with CPS luminosity, circular polarization assumed to be 100% for present studies. From correlations: .1 < ξ < .45 4 < Q'² < 9 GeV²,
- .04 < -t < 1.04
- $40^{\circ} < \theta < 140^{\circ}$ max \rightarrow kinematic dependent cut to stay away from BH peaks (cf last presentation)
- 0 < φ < 360°,
- 0 < ϕ_s < 360°, polarization along x (ϕ_s =0°), assumed to be 100% in present studies

Lab cuts:

- $2^{\circ} < \theta_{lab}$ (vertex) < 120°,
- P(p) > .1 GeV, P(e+ or e-) > .2 GeV
- Acceptance for current setup \rightarrow cf Vardan's presentation

Events analyzed: # events 38660000.

- MC error not completly negligible (cf backup), more stat running
- L (CPS, $E_v = 5.5 \rightarrow 11 \text{ GeV}$)= 5.85e5 pb⁻¹ \Rightarrow 3.27e5 pb⁻¹ above 7.5 GeV

Reconstruction:

- P, e+ and e- are detected
- Resolution effects are not included here, reconstructed observables are calculated from generated values

Choice of binning

Proposed binning for current studies, will be updated after setup optimization and more studies

Important for GPDs and target spin asymmetries: thin ξ and t bins

Option for unpolarized cross section and beam spin asymmetry: $Q^{\prime 2} \rightarrow not$ in presented approach

Statistics for unpolarized cross section in 4x5 kinematic bins vs φ

statistics 200 to 2000 events / bin using Luminosity(CPS, 7.5->11 GeV) = 3.27 e5 pb^{-1}

*in red: bin for reference later

Remark: some bins affected by (θ, ϕ) cut have not the

x-axis: ϕ (rad) y-axis: dN/dq y-labels 0 to max indicated in gray on figs

Beam spin asymmetry in 4x5 kinematic

circular polarization, no dilution factor applied

 \rightarrow given errors, it is measurable and will have impact

Target spin asymmetry for reference bin vs ϕ

A \propto σ(φ,φ_s)-σ(φ,φ_s+π)

Error not displayed dilution factor not included

Extracting physics:

fitting CFF with 2 orthogonal bins in ϕ_s , i.e. line1 + line2 are two independent observables

in term of physics content, it is same as HERMES approach with 2D fits, but no "nice" analytic equations here

.13<ξ<.16 .17<-t<.25 GeV² 7.5<Eγ<11 GeV θ: dynamic cut

6

Double spin asymmetry for reference bin vs ϕ

 Not clear if it can be measured and/or physics extracted: larger dilution factor, non-zero BH asymmetry... Also strong kinematic dependence and may not be optimal to have such wide bins

Double spin asymmetry for reference bin vs ϕ

9

CONCLUSION / TO DO LIST

• Reasonnable statistics and sizeable BSA and TSA: measurement is feasible and will have an impact for CFF \rightarrow for Im(H, H, E) and Re(H)

• Lower uncertainties compared to other experiments

• This approach is for TCS multiparameter fits, and combination with DVCS. Possibility to divide in Q¹² bins for NLO

<u>To do</u>:

- include resolution and reconstructed variables
- optimization of current setup + comparision with modified setup at larger angles
- re-optimize binning and cuts (θ ...) to enhance TCS/BH and asymmetries in balance with reasonnable counting rates, resolution, and (ξ , t) bin size
- CFF fits with expected uncertainties

Backup more counting rates

Expected statistic in φ and φ S bins for reference bin in kinematic

.13<ξ<.16 .17<-t<.25 GeV² 7.5<Eγ<11₁ GeV θ: dynamic cut

BH peaks in yellow, mostly out of acceptance (small θ lab for one lepton, low momentum for the other one) \rightarrow cut as a function of (E, Q'², t)

2 figs on right: θ max cut, all what is above is rejected in case φ =0±30° or φ =180°±30°

cf note: https://halldweb.jlab.org/doc-public/DocDB/ShowDocument?docid=3571

