Monte-Carlo studies for TCS: projection of observables and uncertainties

Marie Boër, April 5, 2018
NPS meeting

Monte Carlo and kinematic cuts

Generated kinematic:

- $7.5<\mathrm{E}_{\mathrm{y}}<11 \mathrm{GeV}$, implemented bremsstrahlung spectra with CPS luminosity, circular polarization assumed to be 100\% for present studies. From correlations: . $1<\xi<.45$
- $4<\mathrm{Q}^{\prime 2}<9 \mathrm{GeV}^{2}$,
-. $04<-\mathrm{t}<1.04$
- $40^{\circ}<\theta<140^{\circ}$ max \rightarrow kinematic dependent cut to stay away from BH peaks (cf last presentation)
- $0<\varphi<360^{\circ}$,
- $0<\varphi_{\mathrm{S}}<360^{\circ}$, polarization along $\times\left(\varphi_{\mathrm{s}}=0^{\circ}\right)$, assumed to be 100% in present studies

Lab cuts:

- $2^{\circ}<\theta_{\text {lab }}$ (vertex) $<120^{\circ}$,
- $P(p)>.1 \mathrm{GeV}, \mathrm{P}(\mathrm{e}+$ or $\mathrm{e}-)>.2 \mathrm{GeV}$
- Acceptance for current setup \rightarrow cf Vardan's presentation

Events analyzed: \# events 38660000.

- MC error not completly negligible (cf backup), more stat running
- $\mathrm{L}\left(\mathrm{CPS}, \mathrm{E}_{\mathrm{y}}=5.5 \rightarrow 11 \mathrm{GeV}\right)=5.85 \mathrm{e} 5 \mathrm{pb}^{-1} \Rightarrow 3.27 \mathrm{e} 5 \mathrm{pb}^{-1}$ above 7.5 GeV

Reconstruction:

- P, e+ and e- are detected
- Resolution effects are not included here, reconstructed observables are calculated from generated values

Choice of binning

Proposed binning for current studies, will be updated after setup optimization and more studies Important for GPDs and target spin asymmetries: thin ξ and t bins
Option for unpolarized cross section and beam spin asymmetry: $\mathrm{Q}^{\prime 2} \rightarrow$ not in presented approach

4 bins in $\xi, Q^{22}\left(\mathrm{GeV}^{2}\right)$
l) $.1<\xi<.13,4<Q^{\prime 2}<4.5$
II). $13<\xi<.16,4<Q^{\prime 2}<5.5$
III). $16<\xi<.22,4<Q^{\prime 2}<7$
IV) $.22<$ \ll $3,3, \quad 4.5<Q^{\prime 2}<9$

5 bins in -t (GeV^{2})

1). $04<-t<.1,2$) $.1<-t<.17$,
3) $.17<-t<.25,4) .25<t<.4$
5) . $4<-t<.7$

1) $.04<-t<1,2) .1<-t<.17,3) .17<-t<.25,4) .25<t<4$
5). $4<-t<.7$
2) $.17<-t<.254) .25<t<.4$
5). $4<-t<.7$
4). $.25<t<.4$
5). $4<-\beta^{\beta}<.7$

Target spin asymmetry for reference bin vs φ

Double spin asymmetry for reference bin vs φ

Target spin asymmetry in $4 x 5$ kinematic bins vs φ, for spin along x and y

- spin along x stat errors not included
- spin along y (MC error displayed)
- size of TSA has strong dependence with φS and correlation with φ and kinematics \rightarrow in other bins, can get larger or smaller
- From .1 to .2 asymmetries: measurable but need bin optimization + proof extraction CFF from fits, in principle duable

x-axis: φ (rad) y-axis: $\mathrm{A}_{\mathrm{U} \mathrm{\perp}}(\varphi)$ y-labels: $-0.5 \rightarrow+0.5$

Double spin asymmetry for reference bin vs φ

CONCLUSION I TO DO LIST

- Reasonnable statistics and sizeable BSA and TSA: measurement is feasible and will have an impact for CFF \rightarrow for $\operatorname{Im}(H, H, E)$ and $\operatorname{Re}(H)$
- Lower uncertainties compared to other experiments
- This approach is for TCS multiparameter fits, and combination with DVCS. Possibility to divide in Q^{12} bins for NLO

To do:

- include resolution and reconstructed variables
- optimization of current setup + comparision with modified setup at larger angles
- re-optimize binning and cuts (θ...) to enhance TCS/BH and asymmetries in balance with reasonnable counting rates, resolution, and (ξ, t) bin size
- CFF fits with expected uncertainties

Backup

more counting rates

$.1<\xi<.13$
(GeV^{2})
-t<. 1

$.13<\xi<.16$

.4<-t
$<.7$

Generated statistics vs φ before acceptance, with cuts in (θ, φ)

A ~ 3 to 5%

$.22<\xi<.3$

Expected statistic in φ and φ S bins for reference bin in kinematic

BH peaks in yellow, mostly out of acceptance (small Өlab for one lepton, low momentum for the other one) \rightarrow cut as a function of $\left(E, Q^{\prime 2}, t\right)$

2 figs on right: θ max cut, all what is above is rejected in case $\varphi=0 \pm 30^{\circ}$ or $\varphi=180^{\circ} \pm 30^{\circ}$

