Compact Photon Source

update for 2/13/2018

B. Wojtsekhowski for collaboration

Current model of y-Source

New developments

the list from our previous meeting

- 1. The raster is 2 mm x 2 mm (requires pol. target rotation)
- 2. The magnet pole is shaped to boost the B field to 3.2 T -> length reduction which allows a longer front shield and a wedged absorber.
- **3.** The central absorber of Cu has 1.9 x better heat conductivity, 4.2 x longer radiation length than the W-Cu (20%) alloy.
- 4. W-powder external shield (16 g/cm³ density) for better shielding.
- 5. Gradual "stepped" opening of the beam line for rad. leak reduction
- 6. Shielding requirement logic: The radiation from the source should be a few times lower than that from the photon beam interaction with the material of a polarized target.

New developments

the list from our previous meeting

1. The raster is 2 mm x 2 mm (requires pol. target rotation)

+ vertical movement

- 2. The magnet pole is shaped to boost the B field to 3.2 T -> length reduction which allows a longer front shield and a wedged absorber.
- **3.** The central absorber of Cu has 1.9 x better heat conductivity, 4.2 x longer radiation length than the W-Cu (20%) alloy.
- 4. W-powder external shield (16 g/cm³ density) for better shielding.
- 5. Gradual "stepped" opening of the beam line for rad. leak reduction
- 6. Shielding requirement logic: The radiation from the source should be a few times lower than that from the photon beam interaction with the material of a polarized target.

From the recent talk by Dustin Rotation Design

Target cell irradiation, rotation

Target cell irradiation, rotation and vertical motion

Target cell irradiation, rotation and vertical motion

The typical slow raster had 100 Hz cycle.

Our experiment will be a month+ long. It will be a huge number of motion cycles $\sim 10^8$.

The vertical motion of the target is not easy.

Target cell irradiation, rotation

Target cell irradiation, rotation with horizontal beam spot movement

Target cell irradiation, rotation with horizontal beam spot movement

A horizontal angular raster by +/- 5 milli radian

A horizontal angular raster by +/- 5 milli radian

was 3 mm x 3 mm hole now 3 mm x 9 mm hole

12

10

Geant4 model (GEMC framework)

Geant4 model (GEMC framework)

Marco got the power profiles

from the tech note for the 2015 WACS proposal

Conceptual Design Report A Compact Photon Source

B. Wojtsekhowski Thomas Jefferson National Accelerator Facility, Newport News, VA 23606

> G. Niculescu James Madison University, Harrisonburg, VA 22807

> > June 22, 2015

Angular raster for 11 GeV beam

Deflection angle of 5 mrad requires

Bdl = (1.1 x 10¹⁰/300)*0.005 = 18 Tesla x cm => 30 cm magnet

Photon beam is moving by +/-1 cm at the target location and +/-15 cm at the beam dump which needs(?) a local shielding

Conclusions

- Angular raster of the beam will require just
 a small increase of the exit channel horizontal
 aperture, which according to previously made MC
 is acceptable for the radiation at the target.
- Combination of the rotation with the horizontal beam spot movement could be the best approach for uniform irradiation of the polarized target cell.