TCS vertex reconstruction as of March of 2019

Vardan Tadevosyan

NPS meeting, 03/21/2019

Setup

Conventions

g2p target field, R component [T]

Magnetic field of 90° rotated target is mostly transverse, along X axis.

Proton, φ reconstruction

Almost 1:1 correspondence between φ at vertex and φ at GEMs.

$$
\begin{aligned}
& \Theta=\Theta_{0}+0.3 \cdot \int \mathrm{BdI} / \mathrm{P} \\
& \text { Approximate } \\
& \Theta^{\sim} \mathrm{a} \cdot \Theta_{0}+\mathrm{b} ; \\
& \text { expect } \\
& \quad a^{\sim} 1, \\
& \quad b^{\sim} 0.21 / \mathrm{P} \\
& \quad \text { for } \int \mathrm{Bdl} \sim 0.7 \mathrm{Tm} .
\end{aligned}
$$

For fixed $P_{Y Z}$, there is linear relation between θ at vertex and θ from GEM trackers.
slope versus P

offset versus 1/P

Slope and offset of the θ linear regression versus $P_{Y Z}$ and $1 / P_{Y Z}$ respectively.

Vertex reconstruction, step by step

1) Use TCS events generated by DEEPGen (M.Boer)
2) Track TCS events through the TCS setup (target field + interaction with material)
3) Select events with $\mathrm{e}-\mathrm{e} \mathrm{e}+$ and p tracks passing through GEMs (request hits in the 1 -st layer, and in either or both of 2-nd and 3-rd layers)
4) Sample deposited in the calorimeters energies from e-and e+ tracks (assume HYCAL resolution)
5) Assign e- and e+ momenta equal to the energy depositions in the calorimeters
6) Determine detected track directions from GEM hits (straight line fit)
7) For e- and e+:
a) Put φ at vertex equal φ measured at GEMs
b) Derive θ at vertex from linear regression (for the measured in the calorimeters momenta)
8) Derive $\gamma^{*} 4$-momentum equal to sum of lepton momenta
9) For the recoil proton:
a) Derive φ at vertex from φ measured by GEMs, by linear regression
b) Put P_{X} and P_{Y} at vertex equal to P_{X} and P_{Y} of γ^{*} (co-planarity)
c) Derive P_{Z} at vertex from P_{x} and φ at vertex
d) Iterate [θ measured, $\mathrm{P}_{\mathrm{YZ}} \rightarrow \theta$ at vertex $\rightarrow \mathrm{P}_{\mathrm{Z}}$ at vertex] one time

Angle reconstruction of TCS events

γ^{*} reconstruction

Recoil proton reconstruction

$\delta P x$ for P

δ Py for P

δE for P

γ incident reconstruction

CM angle reconstruction of TCS events

Accuracies of reconstruction of TCS quantities

Back up

e-, Ө accuracy versus P

Spread of the reconstructed θ residuals for e- tracks in quarters 1 (above beam) and 3 (below beam).

Spread of reconstructed φ residuals for e-tracks in quarters 1 (left of beam) and 2 (right of beam).

$\mathrm{e}-$, reconstruction of θ and φ

proton, reconstruction of φ

proton, φ accuracy versus P

