TCS vertex reconstruction as of March of 2019

Vardan Tadevosyan

Setup

Conventions

 Θ – angle between P_Z and projection of ${\bf P}$ on YZ plane (P_{YZ}). ϕ – angle between P_Z and projection of ${\bf P}$ on XZ plane (P_{XZ}).

Target's magnetic field components

Magnetic field of 90° rotated target is mostly transverse, along X axis.

Proton, φ reconstruction

Almost 1:1 correspondence between ϕ at vertex and ϕ at GEMs.

$$\Theta = \Theta_0 + 0.3 \cdot \int BdI/P$$
Approximate
$$\Theta \sim a \cdot \Theta_0 + b;$$
expect
$$a \sim 1,$$

$$b \sim 0.21/P$$
for
$$\int BdI \sim 0.7 \text{ Tm}.$$

For fixed P_{yz} , there is linear relation between θ at vertex and θ from GEM trackers.

e-, θ linear regression

Slope and offset of the θ linear regression versus P_{YZ} and $1/P_{YZ}$ respectively.

Vertex reconstruction, step by step

- Use TCS events generated by DEEPGen (M.Boer)
- 2) Track TCS events through the TCS setup (target field + interaction with material)
- 3) Select events with e-, e+ and p tracks passing through GEMs (request hits in the 1-st layer, and in either or both of 2-nd and 3-rd layers)
- 4) Sample deposited in the calorimeters energies from e- and e+ tracks (assume HYCAL resolution)
- 5) Assign e- and e+ momenta equal to the energy depositions in the calorimeters
- 6) Determine detected track directions from GEM hits (straight line fit)
- 7) For e- and e+:

For the recoil proton:

- a) Put φ at vertex equal φ measured at GEMs
- b) Derive θ at vertex from linear regression (for the measured in the calorimeters momenta)
-) Derive γ* 4-momentum equal to sum of lepton momenta
 - a) Derive φ at vertex from φ measured by GEMs, by linear regression
 - b) Put P_x and P_y at vertex equal to P_x and P_y of γ^* (co-planarity)
 - c) Derive P_7 at vertex from P_x and φ at vertex
 - d) Iterate [θ measured, $P_{YZ} \rightarrow \theta$ at vertex $\rightarrow P_Z$ at vertex] one time

Angle reconstruction of TCS events

γ* reconstruction

Recoil proton reconstruction

γ incident reconstruction

CM angle reconstruction of TCS events

Accuracies of reconstruction of TCS quantities

Spread of the reconstructed θ residuals for e-tracks in quarters 1 (above beam) and 3 (below beam).

Spread of reconstructed ϕ residuals for e- tracks in quarters 1 (left of beam) and 2 (right of beam).

e-, reconstruction of θ and ϕ

proton, reconstruction of φ

proton, φ accuracy versus P

