Simulations and software development

Ho San KO

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie d'Orsay (IJCLab)

Outline

- Calorimeter simulations
 - Background source by particle ID
 - Beam-pipe and calorimeter magnetic field shieldings
 - Requirements on the magnetic field strength

- Calorimeter software
 - Photon reconstruction
 - Position and angular resolution

Background simulation geometry

Low-xB setting : xB = 0.2, $Q^2 = 3.0$ GeV². Beam-time : 1 day with 11uA Calorimeter : 6 m from the target, 6.3 deg from the beam-line axis Sweeper-Magnet Center : 1.6 m (SHMS-right), 2.3 deg from the beam-line

Background energy and dose distribution

Right plot was obtained by weighting each particle by its energy.

The numbers (~88%, ~20%, etc.) were calculated by integrating the ranges of interests ([0 MeV, 10 MeV] or [10 MeV, 11 GeV]) of the plots above.

~88% of background is from particles with E < 10 MeV.

However, the total energy from particles with E < 10 MeV is ~20% of the total energy deposited in the detector

- Dose is mostly coming from E > 10 MeV particles.
- Dose is dominated by gamma and e-/e+

Background source tracking

1500 [1] [] X 10³ Calorimeter 1000 10^{2} Target & chamber Aır Ο <u>。在</u>自己有限多 10 Beam-pipe 3 Beam-pipe 2 ~5.1m -500~3.3m SM & Beam-pipe 1 -1000 -2000 1 12000 14000 4000 6000 8000 10000 ~1.7m z [mm]

Particles' vertex position (aerial view) that hit calorimeter

Background source tracking

Particles' vertex position (side view) that hit calorimeter

Beam-pipe magnetic field shieldings

Calorimeter : 4 m from the target, 8.5 deg from the beam-line axis Sweeper-Magnet Center : 1.6 m (SHMS-right), 2.3 deg from the beam-line

→ Results may differ in other settings (eg. calorimeter 3 m @ 8.5 deg or 4 m @ 6 deg)

Background dose with magnetic field shieldings

No beam-pipe magnetic field shielding

Beam-pipe magnetic field shielding

Magnetic field strength required

w/o magnetic field shielding

Column Maximum dose in each column of crystals. Not necessarily comparing the same crystals.(stars)

Sweeping magnet's magnetic field ~ 0.3 Tm is sufficient to reduce background

NPS Collaboration Meeting 2020

20 25 30

Sweeping magnet's magnetic field ~ 0.3 Tm is insufficient to reduce background

Calorimeter simulations summary

- The total energy from particles with E < 10 MeV is ~20% of the total energy deposited in the detector.
 - Most of the background is gamma.
- Magnetic field shieldings on beam-pipe and calorimeter does not decrease the background dose on the calorimeter significantly.
- Magnetic field strength of 0.3 Tm is probably enough for the "approved" kinematic settings.

Photon reconstruction software

- Adapted Hall A DVCS software to NPS geometry
- 1. Check if the energy deposited to the crystals (2X2) is above a given threshold. (clustering threshold)
 - 1. If above, keep those 2X2 crystals. If below, discard them for the next step.
- 2. Make clusters(i.e. photons) out of the crystals.
- 3. Get position and momentum of the cluster(s)

Clustering threshold : 1.10 GeV

0.01 • 0.01 0.01

0.09 0.01 • 0.00 0.0

0.02 •

0.08

0.00 0.00 0.00 0.01 0.00

0.00 0.01

0.00 0.00 0.00

Energy resolution of the calorimeter

Carbon 0.5 mm thick, 2cm long frame PbWO4 Updated + calorimeter's VM2000 design Carbon frame Ρ Iron and mu-metal shielding have little Μ effect on energy resolution

Position and angular resolution calculation results and summary

Clustering threshold : 1.10 GeV Miscalibration : 1%

- Position resolution : ~ 1.5 mm
- Angular resolution : < 0.03 deg
- Iron and mu-metal shielding has also a small impact on position resolution

Photon reconstruction software is ready for off-line analysis.

Conclusion

- Most of the background on the calorimeter is gamma.
- Beam-pipe and calorimeter's magnetic field shielding have no significant effect on the background dose.
- For "approved" kinematic settings, magnetic field strength can probably be reduced to 0.3 Tm.
 - Some extreme configurations (calo. 3 m @ 8.5 deg & 4 m @ 6 deg) may need the full 0.6 Tm.
- Photon reconstruction software for off-line analysis is ready.
 - Energy resolution of the calorimeter is < 1.2 % at ~ 7 GeV.
 - Position resolution of the calorimeter is ~ 1.5 mm at ~ 7 GeV.

	Energy Dependence at fixed (Q^2, x_B)												Low-x _B				$\operatorname{High}-Q^2$		
x_{B}			0.36				0.50		0.60				0.2				0.36	0.50	0.60
$Q^2 ({ m GeV})^2$	3.0			4.0		3.4		4.8	5.1		6.0	2.0			3.0	5.5	8.1	10	
$k \; ({ m GeV})$	6.6*	8.8	11	8.8*	11	8.8	11	11	6.6	8.8^{*}	11	11	6.6	8.8	11	11		11	
$k' \; ({ m GeV})$	2.2	4.4	6.6	2.9	5.1	5.2	7.4	5.9	2.1	4.3	6.5	5.7	1.3	3.5	5.7	3.0	2.9	2.4	2.1
$ heta_{ m Calo}(m deg)$	11.7	14.7	16.2	10.3	12.4	20.2	21.7	16.6	13.8	17.8	19.8	17.2	6.3	9.2	10.6	6.3	7.9	8.0	8.0
D_{Calo} (m)	3	3	3	4	3	3	3	3	3	3	3	3	6	4	4	6	4	4	4
$I_{\rm beam}~(\mu{\rm A})$	28	28	28	50	28	28	28	28	28	28	28	28	11	5	50	11	50	50	50
$N_{\rm evt}$ (10^5)	1.5	8.8	8.2	2.1	7.9	7.3	11	5.1	0.2	0.2	2.7	2.6	3.5	3.6	64	3.4	6.1	0.8	0.4
$\sigma_{M_X^2}({\rm GeV^2})$	0.13	0.13	0.12	0.15	0.15	0.09	0.09	0.11	0.09	0.09	0.09	0.09	0.17	0.17	0.17	0.22	0.19	0.15	0.13
Days	1	2	1	1	3	3	2	5	5	1	5	10	1	1	1	1	5	5	12

Anode current of the background

w/o magnetic field shielding

Max dose ~ 400 rad/hr \rightarrow ~ 0.25 GeV/50ns \rightarrow ~ 4X10^3 p.e./50ns (15p.e./MeV)

PMT gain : 10^6

→ ~ 4X10^9 p.e./50ns → ~ 6X10^-10 C/50ns → ~ 13 mA anode current.

High Q^2 setting's max dose (50uA) : ~ 2500 rad/hr \rightarrow ~ 80 mA anode current.

Longitudinal energy deposition on the calorimeter

1mm air gap : ~100% energy deposition 1mm carbon gap : >95% energy deposition

Lateral energy deposition on the calorimeter

Lateral energy deposition in PbWO, calorimeter Cumulated energy deposition in PbWO Calorimeter 종 비명 비미 Energy deposition [%] 100 No gap. 10GeV 1mm air gap, 10GeV 80 1mm carbon gap, 10GeV 60 Energy deposition in the cylinder with radius R 40 10-No gap, 10GeV 20 1mm air gap, 10GeV 1mm carbon gap, 10GeV 10^{-2} 20 2040 50 60 70 80 10 30 40 50 60 70 90 100 80 Energy deposition in 2 Molière radii R [mm] 1mm air gap : >95% energy deposition 1mm carbon gap : ~93% energy deposition 03/Feb/2020 NPS Collaboration Meeting 2020 24

Background energy and dose distribution

Low-xB setting : Calorimeter 6m from the target, 6.3 deg from the beam-line axis

Magnetic field OFF

Right plot was obtained by weighting each particle by its energy.

The numbers (~55%, ~5%, etc.) were calculated by integrating the ranges of interests ([0 MeV, 10 MeV] or [10 MeV, 11 GeV]) of the plots above.

~55% of background is from particles with E < 10 MeV.