

Complementarity of experimental and lattice QCD data on pion parton distributions

Patrick Barry, Jefferson Lab

EIC Meson SF Meeting 2/25/2022

Background and Motivation

Experiments to probe pion structure

Large- x_{π} behavior

- Generally, the parametrization lends a behavior as $x_{\pi} \rightarrow 1$ of the valence quark PDF of $q_{\nu}(x) \propto (1-x)^{\beta}$
- For a fixed order analysis, we find $\beta \approx 1$
- Debate whether $\beta = 1$ or $\beta = 2$
- Connection with pQCD expects $\beta=2$
- Aicher, Schaefer, Vogelsang (ASV) found $\beta = 2$ with threshold resummation

Include Threshold Resummation in DY

• ASV analysis got $(1 - x)^2$ behavior using threshold resummation, while all NLO analyses follow (1 - x)

PHYSICAL REVIEW LETTERS 127, 232001 (2021)

Global QCD Analysis of Pion Parton Distributions with Threshold Resummation

P. C. Barry¹, Chueng-Ryong Ji², N. Sato,¹ and W. Melnitchouk¹

(JAM Collaboration)

¹Jefferson Lab, Newport News, Virginia 23606, USA ²Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA

(Received 18 August 2021; revised 22 October 2021; accepted 26 October 2021; published 29 November 2021)

Resulting PDFs

What we believe to be theoretically better

- Take more seriously the red and yellow
- $\beta_v^{\rm eff} \sim 1 1.2$, much closer to 1 than 2

Datasets -- Kinematics

- Not much kinematic overlap
- Need more observables!

Lattice QCD observables

How to relate PDFs with lattice observables?

Make use of good lattice cross sections and appropriate matching coefficients

$$\begin{split} \sigma_{n/h}(\omega,\xi^2) &\equiv \langle h(p) | T\{\mathcal{O}_n(\xi)\} | h(p) \rangle \\ &= \sum_i f_{i/h}(x,\mu^2) \otimes K_{n/i}(x\omega,\xi^2,\mu^2) \\ &+ O(\xi^2 \Lambda_{\rm QCD}^2) \,, \end{split}$$

Structure just like experimental cross sections – good for global analysis

Reduced loffe time pseudo-distribution (Rp-ITD)

• Lorentz-invariant loffe time pseudo-distribution:

$$\stackrel{\text{``loffe time''}}{\nu = p \cdot z}$$

 $z = (0, 0, 0, z_3)$

Observable is the *reduced* Ioffe time pseudodistribution (Rp-ITD)

$$\mathfrak{M}(
u,z^2) = rac{\mathcal{M}(
u,z^2)}{\mathcal{M}(0,z^2)}$$

Ratio cancels UV divergences

Fitting the Data and Systematic Corrections

Systematic corrections to parametrize

• $z^2 B_1(v)$: power corrections

• $e^{-m_{\pi}(L-Z)}F_{1}(v)$: finite volume corrections

•
$$\frac{a}{|z|}P_1(v)$$
: lattice spacing errors

Other potential systematic corrections the data is not sensitive to

barryp@jlab.org

Integration limits

- Notice the integral over x goes $0 \rightarrow 1$
- However, the integral for experimental values goes from $x_{\min} \rightarrow 1$
- Sensitivity to threshold corrections comes at large x where the PDF is sharply falling, entire integration range of x is not sensitive to threshold regions
- Do not perform threshold resummation for lattice observables

Current-current (CC) correlators

• Pair of vector and axial-vector currents

$$\Sigma_{VA}^{\alpha\beta}(z,p) = z^4 Z_V Z_A \left\langle p \right| \left[\bar{\psi} \gamma^{\alpha} \psi \right](z) \left[\bar{\psi} \gamma^{\beta} \gamma^5 \psi \right](0) \left| p \right\rangle + \left(V \leftrightarrow A \right)$$

- $Z_{V,A}$ are renormalization constants
- Calculate 4-point function as opposed to Rp-ITD (3-point function)

Current-current correlator matching

Very noisy data, fit a subset of the systematics to ensure PDF stability

- $z^2 B_1(v)$: power corrections
- $aR_1(v)$: discretization corrections

Rp-ITD Analysis Results

Goodness of fit

- Scenario A: experimental data alone
- Scenario B: experimental + lattice, no systematics
- Scenario C: experimental + lattice, with systematics

			Scenario A		Scenario B		Scenario C	
			NLO	$+\mathrm{NLL}_\mathrm{DY}$	NLO	$+\mathrm{NLL}_\mathrm{DY}$	NLO	$+\mathrm{NLL}_\mathrm{DY}$
Process	Experiment	$N_{ m dat}$	$\overline{\chi}^2$		$\overline{\chi}^2$		$\overline{\chi}^2$	
DY	E615	61	0.84	0.82	0.84	0.82	0.83	0.82
	$NA10~({\rm 194~GeV})$	36	0.53	0.53	0.52	0.54	0.53	0.55
	$NA10~(\rm 286~GeV)$	20	0.80	0.81	0.78	0.79	0.79	0.87
\mathbf{LN}	H1	58	0.37	0.35	0.38	0.39	0.37	0.37
	ZEUS	50	1.49	1.48	1.60	1.69	1.59	1.60
Rp-ITD	a127m413L	18		_	1.05	1.06	1.05	1.06
	a127m413	8		_	1.97	2.63	1.15	1.42
Total		251	0.81	0.80	0.89	0.92	0.86	0.87

Agreement with the data

- Results from the full fit and isolating the leading twist term
- Difference between bands is the systematic correction

Resulting PDFs

- PDFs and relative uncertainties
- Including lattice reduces uncertainties
- NLO+NLL_{DY} changes a lot – unstable under new data

barryp@jlab.org

Fitting only the p = 1 points

- Most precise points, but not large range in loffe time
- Through analysis containing *only* lattice data, would not be sufficient to get a large x description of PDF

Resulting low-momentum PDFs

 These momentum points do entire job!

Quantifying Systematic Corrections

- Do systematic corrections agree within the DY theories?
 - No!
- Have a min/max estimation for the systematic corrections

Quantifying individual systematics

Breaking down by the 3 systematics

$$z^2 B_1(
u) + rac{a}{|z|} P_1(
u) + e^{-m_\pi(L-z)} F_1(
u)$$

- Dominance of power or spacing corrections depends on z
- Finite volume corrections don't matter

CC correlator analysis results

Resulting χ^2

 Good overall agreement

• Exception being a127m413: the smaller lattice volume ensemble

			NLO	$\rm NLO+\rm NLL_{DY}$
Process	Experiment	$N_{ m dat}$	$\overline{\chi}^2$	$\overline{\chi}^2$
DY	E615 (x_F, Q)	61	0.83	0.81
	NA10 (194 GeV) (x_F, Q)	36	0.55	0.54
	NA10 (286 GeV) (x_F, Q)	20	0.85	0.86
\mathbf{LN}	H1	58	0.37	0.35
	ZEUS	50	1.56	1.55
\mathbf{CC}	a94m278	20	0.33	0.33
	a94m358	20	0.45	0.45
	a127m413L	12	0.72	0.77
	a127m413	12	1.98	1.90
Total		289	0.81	0.80

Agreement with data

Agreement with data

PDFs

- PDFs are almost identical before and after inclusion of lattice data
- CC correlators have no pull!

Quantifying systematics – total

- Different DY methods give different signs, but similar trends
- Large uncertainties at small z

Quantifying systematics

• Each of two systematics

 $z^2B_1(
u)+aR_1(
u)$

• Some tension between the two types, effectively canceling

Conclusions/Outlook

Conclusions and Outlook

- Further control of the lattice systematic corrections needed to further impact calculate at small lattice spacing *a*
- Low-momentum lattice data can be used when combined with experimental data
- Extend methodology to observables that are not well constrained by experimental data helicity PDFs, transversity PDFs, etc.
- Future experiments such as TDIS at JLab and EIC and DY measurements can provide checks of universality in kinematic regions similar to the lattice data

Backup

Deriving resummation expressions – MF

Claim: yellow terms give rise to the resummation expressions

$$\begin{split} \frac{C_{q\bar{q}}}{e_q^2} &= \delta(1-z) \, \frac{\delta(y) + \delta(1-y)}{2} \left[1 + \frac{C_F \alpha_s}{\pi} \left(\frac{3}{2} \ln \frac{M^2}{\mu_f^2} + \frac{2\pi^2}{3} - 4 \right) \right] \\ &+ \frac{C_F \alpha_s}{\pi} \left\{ \frac{\delta(y) + \delta(1-y)}{2} \left[(1+z^2) \left[\frac{1}{1-z} \ln \frac{M^2(1-z)^2}{\mu_f^2 z} \right]_+ + 1 - z \right] \right. \\ &+ \frac{1}{2} \left[1 + \frac{(1-z)^2}{z} y(1-y) \right] \left[\frac{1+z^2}{1-z} \left(\left[\frac{1}{y} \right]_+ + \left[\frac{1}{1-y} \right]_+ \right) - 2(1-z) \right] \right\} \end{split}$$

Claim: Red terms are power suppressed in (1 - z) and wouldn't contribute to the same order as the yellow terms

Generalized Threshold resummation

• Write the (*z*, *y*) coefficients in terms of (*z*_{*a*}, *z*_{*b*}), and for the red terms, you get:

$$dz dy \frac{1}{1-z} \left(\frac{1}{y} + \frac{1}{1-y} \right) = dz_a dz_b \frac{1}{(1-z_a)(1-z_b)} \left[1 + \mathcal{O}(1-z_a, 1-z_b) \right].$$

- This is *not* power suppressed in $(1 z_a)$ or $(1 z_b)$ but instead the same order as the leading power in the soft limit
- Generalized threshold resummation in the soft limit does not agree with the MF methods

Parametrizing the systematic effects

Use a basis of Jacobi polynomials and Taylor expand

$$\operatorname{Re}B_{1}(\nu) = \sum_{n} \sigma_{0,n}(\nu) b_{n},$$

$$\operatorname{Re}P_{1}(\nu) = \sum_{n} \sigma_{0,n}(\nu) p_{n},$$

$$\operatorname{Re}F_{1}(\nu) = \sum_{n} \sigma_{0,n}(\nu) f_{n},$$

$$\sigma_{0,n}(\nu) = \int_{0}^{1} dx \cos(\nu x) x^{a} (1-x)^{b} J_{n}(x),$$

$$\varepsilon \text{ Expanded } b_{n}, p_{n}, f_{n}, \text{ which are free parameters in the fit}$$

Begin at n = 1 to ensure at $\nu = 0$ the observable == 1

Multiple scale problem

$$\sigma_{n/h}(\omega,\xi^2) \equiv \langle h(p)|T\{\mathcal{O}_n(\xi)\}|h(p)\rangle$$
$$= \sum_i f_{i/h}(x,\mu^2) \otimes K_{n/i}(x\omega,\xi^2,\mu^2)$$

- LHS (1st equation): Lattice QCD data are calculated using QCD and must be renormalized to the continuum limit and have renormalization constants – unlike experimental cross sections!!
 - Related with lattice spacing.
- RHS: two scales renormalization scale to specify PDF, factorization scale to get hard coefficients

Perturbation expansion is OK

- At the expense of a small α_S , the product with the logarithm is under control
- Choose $\mu_{lat} = 2$ GeV unless otherwise specified

Methodology

Parametrization of
$$f(x,\mu_0^2) = \frac{N_f x^{\alpha_f} (1-x)^{\beta_f} (1+\gamma_f x^2)}{B(\alpha_f+2,\beta_f+1) + \gamma_f B(\alpha_f+4,\beta_f+1)},$$

 $\begin{array}{ll} \text{Experimental} & \chi_{\mathrm{e}}^{2}(\boldsymbol{a}, \mathrm{data}) = \sum_{i} \left[\frac{d_{i}^{e} - \sum_{k} r_{k}^{e} \, \beta_{k,i}^{e} - t_{i}^{e}(\boldsymbol{a})/n_{e}}{\alpha_{i}^{e}} \right]^{2} + \left(\frac{1 - n_{e}}{\delta n_{e}} \right)^{2} + \sum_{k} \left(r_{k}^{e} \right)^{2}, \end{array}$

Lattice data

$$\chi^2_{\lambda}(\boldsymbol{a}, \mathrm{data}) = \left(\boldsymbol{D}^{\lambda} - \boldsymbol{T}^{\lambda}(\boldsymbol{a})\right)^T V_{\lambda}^{-1} \left(\boldsymbol{D}^{\lambda} - \boldsymbol{T}^{\lambda}(\boldsymbol{a})\right).$$

Covariance matrix

Histograms of parameters

- Outlined NLO
- Filled $NLO+NLL_{DY}$
- All distributions well peaked

Data and theory comparison

- Each bin of z contains 3 momentum points, but only fitting to 1 momentum point
- Overall χ^2 are similar, but the fits to these are

Dataset	NLO ($\overline{\chi}^2$)	NLO+NLL _{DY} ($\overline{\chi}^2$)
a127m413L	0.76	0.81
a127m413	1.28	1.45

Scale Variation

- Do we capture systematic uncertainty from choosing $\mu_{lat} = 2$ GeV?
- Central values within uncertainty band not a big issue

