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Background and Motivation
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Experiments to probe pion structure
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Drell-Yan (DY)
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Large-𝑥! behavior

• Generally, the parametrization lends a 
behavior as 𝑥! → 1 of the valence quark PDF 
of 𝑞" 𝑥 ∝ 1 − 𝑥 #

• For a fixed order analysis, we find 𝛽 ≈ 1
• Debate whether 𝛽 = 1 or 𝛽 = 2
• Connection with pQCD expects 𝛽 = 2
• Aicher, Schaefer, Vogelsang (ASV) found 𝛽 = 2

with threshold resummation
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ASV valence PDF
Phys. Rev. Lett. 105, 114023 (2011).



Include Threshold Resummation in DY

• ASV analysis got 1 − 𝑥 $ behavior using threshold resummation, 
while all NLO analyses follow (1 − 𝑥)
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Resulting PDFs

• Large 𝑥 behavior 
of 𝑞! highly 
sensitive to 
method of 
resummation
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Method 𝝌𝟐/𝐧𝐩𝐭𝐬
NLO 0.85

NLO+NLL cosine 1.29

NLO+NLL expansion 0.95

NLO+NLL double Mellin 0.80

Current data do not 
distinguish between 
NLO and NLO+NLL

Slightly 
disfavored



What we believe to be theoretically better

• Take more seriously the 
red and yellow
• 𝛽"%&& ∼ 1 − 1.2, much 

closer to 1 than 2
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Datasets -- Kinematics

• Not much 
kinematic 
overlap
• Need more 

observables!
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DY

LN



Lattice QCD observables
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How to relate PDFs with lattice observables?

• Make use of good lattice cross sections and appropriate matching 
coefficients

• Structure just like experimental cross sections – good for global 
analysis
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Reduced Ioffe time pseudo-distribution (Rp-ITD)

• Lorentz-invariant Ioffe time pseudo-distribution:
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𝜈 = 𝑝 ⋅ 𝑧
“Ioffe time”

𝑧 = (0,0,0, 𝑧')
Bare quark and 
antiquark fields Gauge link

Observable is the reduced
Ioffe time pseudo-
distribution (Rp-ITD)

Ratio cancels 
UV divergences



Fitting the Data and Systematic Corrections

Valence quark 
distribution in pion

Wilson coefficients 
for matching

Systematic corrections to parametrize Other potential 
systematic 
corrections the data 
is not sensitive to

•  𝑧(𝐵) 𝜈 : power corrections •  *+ 𝑃) 𝜈 : lattice spacing errors

•  𝑒,-! .,+ 𝐹) 𝜈 : finite volume corrections
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Integration lower bound is 0



Integration limits

• Notice the integral over 𝑥 goes 0 → 1
• However, the integral for experimental values goes from 𝑥'() → 1
• Sensitivity to threshold corrections comes at large 𝑥 where the PDF is 

sharply falling, entire integration range of 𝑥 is not sensitive to 
threshold regions
• Do not perform threshold resummation for lattice observables
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Current-current (CC) correlators

• Pair of vector and axial-vector currents

• 𝑍*,, are renormalization constants
• Calculate 4-point function as opposed to Rp-ITD (3-point function)
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Current-current correlator matching

Very noisy data, fit a subset of the systematics to ensure PDF stability
• 𝑧$𝐵- 𝜈 : power corrections
• 𝑎𝑅- 𝜈 : discretization corrections

barryp@jlab.org 15

Valence quark 
distribution in pion

Wilson coefficients 
for matching

Integration lower bound is 0



Rp-ITD Analysis Results

barryp@jlab.org 16



Goodness of fit

• Scenario A: 
experimental data 
alone
• Scenario B: 

experimental + lattice, 
no systematics
• Scenario C: 

experimental + lattice, 
with systematics
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Agreement with the data

• Results from 
the full fit and 
isolating the 
leading twist 
term
• Difference 

between bands 
is the 
systematic 
correction
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Resulting PDFs

• PDFs and 
relative 
uncertainties
• Including lattice 

reduces 
uncertainties
• NLO+NLLDY

changes a lot –
unstable under 
new data
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Effective 𝛽 from 1 − 𝑥 '#$$
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Calculations 
from QCD do 
not predict 
𝛽%&& = 2



Fitting only the 𝑝 = 1 points

• Most precise points, but not large range in Ioffe time
• Through analysis containing only lattice data, would not be sufficient 

to get a large 𝑥 description of PDF
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Resulting low-momentum PDFs

• These 
momentum 
points do 
entire job!
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Quantifying Systematic Corrections

• Do systematic corrections agree 
within the DY theories?
• No!

• Have a min/max estimation for 
the systematic corrections
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Quantifying individual systematics

• Breaking down by the 3 
systematics

• Dominance of power or 
spacing corrections 
depends on 𝑧
• Finite volume corrections 

don’t matter
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CC correlator analysis results
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Resulting 𝜒(

• Good overall 
agreement
• Exception 

being 
a127m413: 
the smaller 
lattice volume 
ensemble
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Agreement with data
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Agreement with data
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PDFs

• PDFs are almost 
identical before 
and after 
inclusion of 
lattice data 
• CC correlators 

have no pull!
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Quantifying systematics – total 

• Different DY methods 
give different signs, but 
similar trends
• Large uncertainties at 

small 𝑧
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Quantifying systematics

• Each of two systematics

• Some tension between the two 
types, effectively canceling
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Conclusions/Outlook
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Conclusions and Outlook

• Further control of the lattice systematic corrections needed to further 
impact – calculate at small lattice spacing 𝑎
• Low-momentum lattice data can be used when combined with 

experimental data
• Extend methodology to observables that are not well constrained by 

experimental data – helicity PDFs, transversity PDFs, etc.
• Future experiments such as TDIS at JLab and EIC and DY 

measurements can provide checks of universality in kinematic regions 
similar to the lattice data
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Backup
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Deriving resummation expressions – MF

Claim: yellow terms give rise to the resummation expressions

Claim: Red terms are power suppressed in (1 − 𝑧) and wouldn’t contribute 
to the same order as the yellow terms
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Generalized Threshold resummation

• Write the (𝑧, 𝑦) coefficients in terms of (𝑧. , 𝑧/), and for the red 
terms, you get:

• This is not power suppressed in (1 − 𝑧.) or (1 − 𝑧/) but instead the 
same order as the leading power in the soft limit 
• Generalized threshold resummation in the soft limit does not agree 

with the MF methods
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Parametrizing the systematic effects

• Use a basis of Jacobi polynomials and Taylor expand
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• Expanded 𝑏/, 𝑝/, 𝑓/, which are free 
parameters in the fit

Begin at 𝑛 = 1 to ensure at 𝜈 = 0 the observable == 1



Multiple scale problem

• LHS (1st equation): Lattice QCD data are calculated using QCD and 
must be renormalized to the continuum limit and have 
renormalization constants – unlike experimental cross sections!!
• Related with lattice spacing.

• RHS: two scales – renormalization scale to specify PDF, factorization 
scale to get hard coefficients
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Perturbation expansion is OK

• At the expense of 
a small 𝛼0, the 
product with the 
logarithm is 
under control
• Choose 𝜇123 = 2

GeV unless 
otherwise 
specified
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Methodology

Experimental 
data

Lattice data

Covariance matrix

Parametrization of 
PDFs
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Histograms of 
parameters
• Outlined – NLO
• Filled – NLO+NLLDY
• All distributions well 

peaked
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Data and theory comparison

• Each bin of 𝑧
contains 3 
momentum points, 
but only fitting to 1 
momentum point
• Overall 𝜒$ are 

similar, but the fits 
to these are 

Dataset NLO (0𝝌𝟐) NLO+NLLDY (0𝝌𝟐)
a127m413L 0.76 0.81
a127m413 1.28 1.45 barryp@jlab.org 42



Scale Variation

• Do we capture systematic uncertainty from choosing 𝜇123 = 2 GeV?
• Central values within uncertainty band – not a big issue
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