A sweep magnet for the NPS experiments

Bogdan Wojtsekhowski (JLab)

Kinematics of SI pion (E12-13-007)

$\#$	θ_{γ}	θ_{e}	$\mathrm{D}_{\text {mag }}, \mathrm{m}$	Bdl, Tm	$\mathrm{D}_{\text {mag }}$-Calo, m	angle range, degree
A	10.57	10.27	1.57	0.3	$3-1.57$	
B	16.20	11.70	1.57	0.3		
C	12.44	15.38	1.57	0.3		
D	7.93	24.15	1.57	0.3	1.43	$4.7-11.1$
E	16.57	15.65	1.57	0.3	1.43	
F	17.23	17.84	1.57	0.3	1.43	

Kinematics of DVCS (E12-13-10)

$\#$	θ_{γ}	θ_{e}	$\mathrm{D}_{\text {calo }}, \mathrm{m}$	BdI, Tm	$\mathrm{D}_{\mathrm{mag}}$-Calo, m	angle range, degree
3	16.2	11.7	3	0.3	1.43	
5	12.4	15.3	3	0.3	1.43	
7	21.7	11.7	3	0.3	1.43	
8	16.6	15.6	3	0.3	1.43	
13	6.3	27.9	6	0.3	4.43	$3.1-9.6$
16	6.3	17.3	6	0.3	4.43	

range of angles: $68 \mathrm{~cm} / 300=>12.8$ degrees
range of angles: $68 \mathrm{~cm} / 600=>6.5$ degrees

Kinematics of WACS (E12-14-003) /Pion

$\#$	θ_{γ}	θ_{p}	$\mathrm{D}_{\text {mag }}, \mathrm{m}$	Bdl, Tm	$\mathrm{D}_{\text {det }}$, m	$\mathrm{D}_{\text {magr }}$-Calo, m	BdI,Tm $/$ $\mathrm{D}_{\mathrm{mag}}$-Calo, m
4A	14.2	40.1	$2.45+0.2$	0.3	9.0	6.15	$0.3 /(9-1.57)$
4B	17.9	33.7	$1.65+0.2$	0.4	7.0		
4C	22.5	27.8	$1.65+0.2$	0.5	5.0		
4D	26.9	23.7	$1.10+0.2$	0.6	3.5		
4E	34.0	18.9	$1.10+0.2$	0.6	3.0	1.7	$0.61 \mathrm{Tm} / 1.68$
5A	11.0	41.7	$2.45+0.2$	0.25	11.0		$9.3-12.7$ deg
5B	13.8	35.3	$2.45+0.2$	0.35	9.0		
5C	16.9	30.0	$1.65+0.2$	0.4	7.5		
5D	19.7	26.3	$1.65+0.2$	0.5	6.0		
5E	29.9	17.8	$1.10+0.2$	0.6	3.25	1.95	$0.70 \mathrm{Tm} / 1.68$

Horizontal field dipole

the beam side is free of coils the beam opening is $+/-1$ degree open aperture to detector above 2 degrees! vertical aperture is 60 cm ; horizontal is 30 cm

Horizontal field dipole

Field on the beam line with the septa w/o correctors and external shielding

Example of a beam-line: APEX dipole

Field on the beam line (+/- 0.9 deg.) with the septa plus correctors and the external shielding

Fringe field problem

Fringe field problem

Fringe field solution

HMS side solution

Q1 cut

Fringe field result

SIPP/DVCS

 angle \& fieldThis positive field is due to a compensation magnet

for $\mathrm{Bdl}=150 \mathrm{Gcm}$ and $\mathrm{p}=6 . \mathrm{GeV}$ defleetion is 0.007 mrad however Bdl $=\sim 280 \mathrm{GH}$ without the downstream pipe

Horizontal field dipole, model SAM-DVCS

NPS Bi-weekly Meeting July 2015

Horizontal field dipole, model SAM-DVCS

Iron weight is of 15 tons Coils weight is of 1.5 tons

NPS Bi-weekly Meeting July 2015

Horizontal field dipole, model SAM-WACS

NPS Bi-weekly Meeting July 2015

Cost example: APEX septum

12 tons, four flat coils, complicated poles:
construction cost $\$ 134 \mathrm{k}$ built by Buckley (NZ)

Summary, Next

$>$ The sweep/deflector magnet for the four NPS experiments could be made by using a horizontal field magnet.
$>$ The total weight of the magnet is 22 tons
$>$ The coils using low current density $400(700) \mathrm{A} / \mathrm{cm}^{2}$, which will require of $110 \mathrm{~kW}(150 \mathrm{~V})$ power.
$>$ The distance from the pivot to magnet center is "fixed" to 157 cm .
$>$ NEXT: Field map for GEANT MC of experiments
Geometry check with HMS and beam line

