

Pion and proton TMD phenomenology

Patrick Barry, Leonard Gamberg, Wally Melnitchouk, Eric Moffat, Daniel Pitonyak, Alexei Prokudin, Nobuo Sato

Meson SF, Jan 19th, 2023

Light-front correlator

$$egin{aligned} & ilde{f}_{q/\mathcal{N}}(x,b_T;\mu,\zeta)\ &=\intrac{\mathrm{d}b^-}{4\pi}\,e^{-ixP^+b^-}\mathrm{Tr}ig[\langle\,\mathcal{N}\,|\,ar{\psi}_q(b)\gamma^+\mathcal{W}(b,0)\psi_q(0)\,|\,\mathcal{N}\,
angleig],\ &b\equivig(b^-,0^+,oldsymbol{b}_Tig) \end{aligned}$$

- b_T is the Fourier conjugate to the intrinsic transverse momentum of quarks in the hadron, k_T
- We can learn about the coordinate space correlations of quark fields in hadrons

Factorization for low- q_T Drell-Yan

- Like collinear observable, a hard part with two functions that describe structure of beam and target
- So called "W"-term, valid only at low- q_T

$$\frac{\mathrm{d}^3\sigma}{\mathrm{d}\tau\mathrm{d}Y\mathrm{d}q_T^2} = \frac{4\pi^2\alpha^2}{9\tau S^2} \sum_q H_{q\bar{q}}(Q^2,\mu) \int \mathrm{d}^2b_T \, e^{ib_T \cdot q_T} \times \tilde{f}_{q/\pi}(x_\pi,b_T,\mu,Q^2) \, \tilde{f}_{\bar{q}/A}(x_A,b_T,\mu,Q^2),$$

Small b_T operator product expansion

• At small b_T , the TMDPDF can be described in terms of its OPE:

$$\tilde{f}_{f/h}(x,b_T;\mu,\zeta_F) = \sum_j \int_x^1 \frac{d\xi}{\xi} \tilde{\mathcal{C}}_{f/j}(x/\xi,b_T;\zeta_F,\mu) f_{j/h}(\xi;\mu) + \mathcal{O}((\Lambda_{\text{QCD}}b_T)^a)$$

- where \tilde{C} are the Wilson coefficients, and $f_{j/h}$ is the collinear PDF
- Breaks down when b_T gets large

b_* prescription

• A common approach to regulating large b_T behavior

$$\mathbf{b}_{*}(\mathbf{b}_{T}) \equiv rac{\mathbf{b}_{T}}{\sqrt{1+b_{T}^{2}/b_{\max}^{2}}}.$$

Must choose an appropriate value; a transition from perturbative to non-perturbative physics

- At small b_T , $b_*(b_T) = b_T$
- At large b_T , $b_*(b_T) = b_{\max}$

Introduction of non-perturbative functions

• Because $b_* \neq b_T$, have to non-perturbatively describe large b_T behavior

 e^{-}

Completely general – independent of quark, hadron, PDF or FF

$$g_K(b_T; b_{\max}) = -\tilde{K}(b_T, \mu) + \tilde{K}(b_*, \mu)$$

Non-perturbative function dependent in principle on flavor, hadron, etc.

$$= \frac{\tilde{f}_{j/H}(x, \boldsymbol{b}_{\mathrm{T}}; \boldsymbol{b}_{\mathrm{max}})}{\tilde{f}_{j/H}(x, \boldsymbol{b}_{\mathrm{T}}; \zeta, \mu)} e^{g_{K}(b_{\mathrm{T}}; b_{\mathrm{max}}) \ln(\sqrt{\zeta}/Q_{0})}.$$

Full description of the TMD

$$\tilde{f}_{q/\mathcal{N}(A)}(x, b_T, \mu_Q, Q^2) = (C \otimes f)_{q/\mathcal{N}(A)}(x; b_*) \\ \times \exp\left\{-g_{q/\mathcal{N}(A)}(x, b_T) - g_K(b_T) \ln \frac{Q}{Q_0} - S(b_*, Q_0, Q, \mu_Q)\right\}$$

• Have individual pieces that are sensitive to $low-b_T$ spectrum (perturbative) and the high- b_T (non-perturbative)

TMD factorization in Drell-Yan

• In small- $q_{\rm T}$ region, use the Collins-Soper-Sterman (CSS) formalism and b_* prescription

. .

1.

Datasets in the analysis

Expt.	√s (GeV)	Reaction	Observable	Q (GeV)	x_F or y	N _{pts.}
E288 [39]	19.4	$p + Pt \rightarrow \ell^+ \ell^- X$	$Ed^3\sigma/d^3\mathbf{q}$	4 – 9	y = 0.4	38
E288 [39]	23.8	$p + Pt \rightarrow \ell^+ \ell^- X$	$Ed^{3}\sigma/d^{3}q$	4 - 12	y = 0.21	48
E288 [39]	24.7	$p + Pt \rightarrow \ell^+ \ell^- X$	$Ed^3\sigma/d^3\mathbf{q}$	4 - 14	y = 0.03	74
E605 [40]	38.8	$p + Cu \rightarrow \ell^+ \ell^- X$	$Ed^{3}\sigma/d^{3}q$	7 - 18	$x_F = 0.1$	49
E772 [41]	38.8	$p + D \rightarrow \ell^+ \ell^- X$	$Ed^3\sigma/d^3\mathbf{q}$	5 – 15	$0.1 \le x_F \le 0.3$	61
E866 [50]	38.8	$p + Fe \rightarrow \ell^+ \ell^- X$	R_{FeBe}	4 - 8	$0.13 \le x_F \le 0.93$	10
E866 [50]	38.8	$p + W \rightarrow \ell^+ \ell^- X$	R_{WBe}	4 - 8	$0.13 \le x_F \le 0.93$	10
E537 [38]	15.3	$\pi^- + W \to \ell^+ \ell^- X$	$\mathrm{d}^2\sigma/\mathrm{d}x_F\mathrm{d}q_T$	4 – 9	$0 < x_F < 0.8$	48
E615 [4]	21.8	$\pi^- + W \to \ell^+ \ell^- X$	$\mathrm{d}^2\sigma/\mathrm{d}x_F\mathrm{d}q_T^2$	4.05 - 8.55	$0 < x_F < 0.8$	45

- Total of 383 number of points
- All fixed target, low-energy data

Kinematics in x_1, x_2

 Using the kinematic mid-point from each of the bins, we show the range in x₁ and

 x_2

Data and theory agreement

• Fit both pA and πA DY data and achieve good agreement to both

Process	Experiment	$\sqrt{s} \text{ GeV}$	χ^2/np	Z-score
q_T -integr. DY	E615 [37]	21.8	0.86	0.76
$\pi W \to \mu^+ \mu^- X$	NA10 [38]	19.1	0.54	2.27
	NA10 [38]	23.2	0.91	0.18
Leading neutron	H1 [73]	318.7	0.36	4.61
$ep \rightarrow e'nX$	ZEUS [74]	300.3	1.48	2.16
q_T -dep. pA DY	E288 [67]	19.4	0.93	0.25
$pA \to \mu^+\mu^-X$	E288 [67]	23.8	1.33	1.54
	E288 [67]	24.7	0.95	0.23
	E605 [68]	38.8	1.07	0.39
	E772 [69]	38.8	2.41	5.74
	E866 (Fe/Be) [70]	38.8	1.07	0.29
	E866 (W/Be) [70]	38.8	0.89	0.11
q_T -dep. $\pi A DY$	E615 [37]	21.8	1.61	2.58
$\pi W \to \mu^+ \mu^- X$	E537 [71]	15.3	1.11	0.57
Total			1.15	2.55

Conditional density

• We define a quantity in which describes the ratio of the 2-dimensional density to the integrated, b_T -independent number density

$$ilde{f}_{q/\mathcal{N}}(b_T|x;Q,Q^2) \equiv rac{ ilde{f}_{q/\mathcal{N}}(x,b_T;Q,Q^2)}{\int \mathrm{d}^2 oldsymbol{b}_T ilde{f}_{q/\mathcal{N}}(x,b_T;Q,Q^2)} \,.$$

Resulting TMD PDFs of proton and pion

- Shown in the range where pion and proton are both constrained
- Broadening appearing as *x* increases
- Up quark in pion is narrower than up quark in proton

Average
$$b_T$$

• The conditional expectation value of b_T for a given x

$$\langle b_T | x \rangle_{q/\mathcal{N}} = \int \mathrm{d}^2 \boldsymbol{b}_T \, b_T \, \tilde{f}_{q/\mathcal{N}}(b_T | x; Q, Q^2)$$

• Shows a measure of the transverse correlation in coordinate space of the quark in a hadron for a given *x*

Resulting average b_T

- Up quark in proton is ~ 1.2 times bigger than that of pion
- Pion's $\langle b_T | x \rangle$ is 5.3 - 7.5 σ smaller than proton in this range
- Decreases as x decreases

Possible explanation

• At large *x*, we are in a valence region, where only the valence quarks are populating the momentum dependence of the hadron

Possible explanation

• At small x, sea quarks and potential $q\bar{q}$ bound states allowing only for a smaller bound system

Future work – pion SIDIS

 $eN \rightarrow e'N'\pi X$

- Measure an outgoing pion in the TDIS experiment
- Gives us another observable sensitive to pion TMDs
 - Needed for tests of universality

