Pion and proton TMD phenomenology

Patrick Barry, Leonard Gamberg, Wally Melnitchouk, Eric Moffat, Daniel Pitonyak, Alexei Prokudin, Nobuo Sato

Meson SF, Jan 19 ${ }^{\text {th }}, 2023$

Light-front correlator

$$
\begin{aligned}
& \tilde{f}_{q / \mathcal{N}}\left(x, b_{T} ; \mu, \zeta\right) \\
& =\int \frac{\mathrm{d} b^{-}}{4 \pi} e^{-i x P^{+} b^{-}} \operatorname{Tr}\left[\langle\mathcal{N}| \bar{\psi}_{q}(b) \gamma^{+} \mathcal{W}(b, 0) \psi_{q}(0)|\mathcal{N}\rangle\right] \\
& b \equiv\left(b^{-}, 0^{+}, \boldsymbol{b}_{T}\right)
\end{aligned}
$$

- $\boldsymbol{b}_{\boldsymbol{T}}$ is the Fourier conjugate to the intrinsic transverse momentum of quarks in the hadron, $\boldsymbol{k}_{\boldsymbol{T}}$
- We can learn about the coordinate space correlations of quark fields in hadrons

Factorization for low- q_{T} Drell-Yan

- Like collinear observable, a hard part with two functions that describe structure of beam and target
- So called " W "-term, valid only at low- q_{T}

$$
\begin{aligned}
\frac{\mathrm{d}^{3} \sigma}{\mathrm{~d} \tau \mathrm{~d} Y \mathrm{~d} q_{T}^{2}}=\frac{4 \pi^{2} \alpha^{2}}{9 \tau S^{2}} & \sum_{q} H_{q \bar{q}}\left(Q^{2}, \mu\right) \int \mathrm{d}^{2} b_{T} e^{i b_{T} \cdot q_{T}} \\
& \times \tilde{f}_{q / \pi}\left(x_{\pi}, b_{T}, \mu, Q^{2}\right) \tilde{f}_{\bar{q} / A}\left(x_{A}, b_{T}, \mu, Q^{2}\right),
\end{aligned}
$$

Small b_{T} operator product expansion

- At small b_{T}, the TMDPDF can be described in terms of its OPE:

$$
\tilde{f}_{f / h}\left(x, b_{T} ; \mu, \zeta_{F}\right)=\sum_{j} \int_{x}^{1} \frac{d \xi}{\xi} \tilde{\mathcal{C}}_{f / j}\left(x / \xi, b_{T} ; \zeta_{F}, \mu\right) f_{j / h}(\xi ; \mu)+\mathcal{O}\left(\left(\Lambda_{\mathrm{QCD}} b_{T}\right)^{a}\right)
$$

- where \tilde{C} are the Wilson coefficients, and $f_{j / h}$ is the collinear PDF
- Breaks down when b_{T} gets large

b_{*} prescription

- A common approach to regulating large b_{T} behavior

$$
\mathbf{b}_{*}\left(\mathbf{b}_{T}\right) \equiv \frac{\mathbf{b}_{T}}{\sqrt{1+b_{T}^{2} / b_{\text {max }}^{2}}} \cdot \quad \begin{aligned}
& \text { Must choose an appropriate value; } \\
& \text { a transition from perturbative to } \\
& \text { non-perturbative physics }
\end{aligned}
$$

- At small $b_{T}, b_{*}\left(b_{T}\right)=b_{T}$
- At large $b_{T}, b_{*}\left(b_{T}\right)=b_{\text {max }}$

Introduction of non-perturbative functions

- Because $b_{*} \neq b_{T}$, have to non-perturbatively describe large b_{T} behavior

Completely general -

 independent of quark, hadron, PDF or FF$$
g_{K}\left(b_{T} ; b_{\max }\right)=-\tilde{K}\left(b_{T}, \mu\right)+\tilde{K}\left(b_{*}, \mu\right)
$$

$$
e^{-g_{j / H}\left(x, \boldsymbol{b}_{\mathrm{T}} ; b_{\max }\right)}
$$

Non-perturbative function dependent in principle on flavor, hadron, etc.

$$
=\frac{\tilde{f}_{j / H}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \zeta, \mu\right)}{\tilde{f}_{j / H}\left(x, \boldsymbol{b}_{*} ; \zeta, \mu\right)} e^{g_{K}\left(b_{\mathrm{T}} ; b_{\max }\right) \ln \left(\sqrt{\zeta} / Q_{0}\right)}
$$

Full description of the TMD

$$
\begin{aligned}
& \tilde{f}_{q / \mathcal{N}(A)}\left(x, b_{T}, \mu_{Q}, Q^{2}\right)=(C \otimes f)_{q / \mathcal{N}(A)}\left(x ; b_{*}\right) \\
& \times \exp \left\{-g_{q / \mathcal{N}(A)}\left(x, b_{T}\right)-g_{K}\left(b_{T}\right) \ln \frac{Q}{Q_{0}}-S\left(b_{*}, Q_{0}, Q, \mu_{Q}\right)\right\}
\end{aligned}
$$

- Have individual pieces that are sensitive to low- b_{T} spectrum (perturbative) and the high- b_{T} (non-perturbative)

TMD factorization in Drell-Yan

- In small- q_{T} region, use the Collins-Soper-Sterman (CSS) formalism and b_{*} prescription

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} y \mathrm{~d} q_{\mathrm{T}}^{2}}=\frac{4 \pi^{2} \alpha^{2}}{9 Q^{2}{ }^{2}} \sum_{j, j, i, j B} H_{j \bar{j}}^{\mathrm{DY}}\left(Q, \mu_{Q}, a_{s}\left(\mu_{Q}\right)\right) \int \frac{\mathrm{d}^{2} b_{\mathrm{T}}}{(2 \pi)^{2}} e^{i q_{\mathrm{T}} \cdot b_{\mathrm{T}}}
$$

Can these data constrain the pion collinear PDF?

$$
\begin{aligned}
& \times e^{-g_{j / A}\left(x_{A}, b_{\mathrm{T}} ; b_{\max }\right)} \int_{x_{A}}^{1} \frac{\mathrm{~d} \xi_{A}}{\xi_{A}} f_{j_{A} / A}\left(\xi_{A} ; \mu_{b_{*}}\right) \\
& \text { Non-perturbative } \\
& \text { pieces } \times e^{\mathrm{PDF}}\left(\frac{x_{A}}{\xi_{A}}, b_{*} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}, a_{s}\left(\mu_{b_{*}}\right)\right) \text { Perturbative } \\
& \text { pieces }
\end{aligned}
$$

Datasets in the analysis

Expt.	$\sqrt{\boldsymbol{s}}(\mathbf{G e V})$	Reaction	Observable	$\boldsymbol{Q}(\boldsymbol{G e V})$	$\boldsymbol{x}_{\boldsymbol{F}}$ or \boldsymbol{y}	$\boldsymbol{N}_{\text {pts. }}$
E288 [39]	19.4	$p+P t \rightarrow \ell^{+} \ell^{-} X$	$E \mathrm{~d}^{3} \sigma / \mathrm{d}^{3} \mathbf{q}$	$4-9$	$y=0.4$	38
E288 [39]	23.8	$p+P t \rightarrow \ell^{+} \ell^{-} X$	$E \mathrm{~d}^{3} \sigma / \mathrm{d}^{3} \mathbf{q}$	$4-12$	$y=0.21$	48
E288 [39]	24.7	$p+P t \rightarrow \ell^{+} \ell^{-} X$	$E \mathrm{~d}^{3} \sigma / \mathrm{d}^{3} \mathbf{q}$	$4-14$	$y=0.03$	74
E605 [40]	38.8	$p+C u \rightarrow \ell^{+} \ell^{-} X$	$E \mathrm{~d}^{3} \sigma / \mathrm{d}^{3} \mathbf{q}$	$7-18$	$x_{F}=0.1$	49
E772 [41]	38.8	$p+D \rightarrow \ell^{+} \ell^{-} X$	$E d^{3} \sigma / \mathrm{d}^{3} \mathbf{q}$	$5-15$	$0.1 \leq x_{F} \leq 0.3$	61
E866 [50]	38.8	$p+F e \rightarrow \ell^{+} \ell^{-} X$	$R_{F e B e}$	$4-8$	$0.13 \leq x_{F} \leq 0.93$	10
E866 [50]	38.8	$p+W \rightarrow \ell^{+} \ell^{-} X$	$R_{W B e}$	$4-8$	$0.13 \leq x_{F} \leq 0.93$	10
E537 [38]	15.3	$\pi^{-}+W \rightarrow \ell^{+} \ell^{-} X$	$\mathrm{~d}^{2} \sigma / \mathrm{d} x_{F} \mathrm{~d} q_{T}$	$4-9$	$0<x_{F}<0.8$	48
E615 $[4]$	21.8	$\pi^{-}+W \rightarrow \ell^{+} \ell^{-} X$	$\mathrm{~d}^{2} \sigma / \mathrm{d} x_{F} \mathrm{~d} q_{T}^{2}$	$4.05-8.55$	$0<x_{F}<0.8$	45

- Total of 383 number of points
- All fixed target, low-energy data

Kinematics in x_{1}, x_{2}

- Using the kinematic mid-point from each of the bins, we show the range in x_{1} and x_{2}

Data and theory agreement

- Fit both $p A$ and πA DY data and achieve good agreement to both

Process	Experiment	$\sqrt{s} \mathrm{GeV}$	χ^{2} / np	Z-score		
$q_{T-\text {-integr. } D Y}$	E615 [37]	21.8	0.86	0.76		
$\pi W \rightarrow \mu^{+} \mu^{-} X$	NA10 [38]	19.1	0.54	2.27		
	NA10 [38]	23.2	0.91	0.18		
Leading neutron	H1 [73]	318.7	0.36	4.61		
$e p \rightarrow e^{\prime} n X$	ZEUS [74]	300.3	1.48	2.16		
$q_{T}-$ dep. $p A D Y$	E288 [67]	19.4	0.93	0.25		
$p A \rightarrow \mu^{+} \mu^{-} X$	E288 [67]	23.8	1.33	1.54		
	E288 [67]	24.7	0.95	0.23		
	E605 [68]	38.8	1.07	0.39		
	E772 [69]	38.8	2.41	5.74		
	E866 $(F e / B e)[70]$	38.8	1.07	0.29		
	E866 $(W / B e)[70]$	38.8	0.89	0.11		
$q_{T}-d e p . ~ \pi A D Y$	E615 [37]	21.8	1.61	2.58		
$\pi W \rightarrow \mu^{+} \mu^{-} X$	E537 [71]	15.3	1.11	0.57		
Total						

Conditional density

- We define a quantity in which describes the ratio of the 2dimensional density to the integrated, b_{T}-independent number density

$$
\tilde{f}_{q / \mathcal{N}}\left(b_{T} \mid x ; Q, Q^{2}\right) \equiv \frac{\tilde{f}_{q / \mathcal{N}}\left(x, b_{T} ; Q, Q^{2}\right)}{\int \mathrm{d}^{2} \boldsymbol{b}_{T} \tilde{f}_{q / \mathcal{N}}\left(x, b_{T} ; Q, Q^{2}\right)} .
$$

Resulting TMD PDFs of proton and pion

- Shown in the range where pion and proton are both constrained
- Broadening appearing as x increases
- Up quark in pion is narrower than up quark in proton

Average b_{T}

- The conditional expectation value of b_{T} for a given x

$$
\left\langle b_{T} \mid x\right\rangle_{q / \mathcal{N}}=\int \mathrm{d}^{2} \boldsymbol{b}_{T} b_{T} \tilde{f}_{q / \mathcal{N}}\left(b_{T} \mid x ; Q, Q^{2}\right)
$$

- Shows a measure of the transverse correlation in coordinate space of the quark in a hadron for a given x

Resulting average b_{T}

- Up quark in proton is ~ 1.2 times
bigger than that of pion
- Pion's $\left\langle b_{T} \mid x\right\rangle$ is $5.3-7.5 \sigma$ smaller than proton in this range
- Decreases as x decreases

Possible explanation

- At large x, we are in a valence region, where only the valence quarks are populating the momentum dependence of the hadron

Possible explanation

- At small x, sea quarks and potential $q \bar{q}$ bound states allowing only for a smaller bound system

Future work - pion SIDIS

$$
e N \rightarrow e^{\prime} N^{\prime} \pi X
$$

- Measure an outgoing pion in the TDIS experiment
- Gives us another observable sensitive to pion TMDs
- Needed for tests of universality

