Dosimetry Technology For Radiation Oncology
Tech Transfer Workshop 2018

Brian K. Hulse, R.T.(R)(T)
Product Specialist

© 2017 IBA SA
Personal Introduction

- Product Specialist – IBA Dosimetry
- ARRT Board Certified
 - Radiography
 - Therapy
- Experience
 - Clinical
 - Facility Director
 - Therapist
 - Vendor
 - Applications Specialist
 - Hardware
 - Software
 - Project Management
 - EMR Implementation Consultant
Introduction to IBA

- Proton Therapy
- Dosimetry
 - 220 International Employees
 - 4 Offices
 - USA, Germany, China, France
Radiation Oncology

- Radiation Oncology
 - ‘Mysterious’ Portion of Healthcare
- Radiation has been an effective tool for treating cancer for more than 100 years.
- About two-thirds of all cancer patients will receive radiation therapy as part of their treatment.
- Radiation therapy works by damaging the DNA within cancer cells resulting in cell death.
- The goal is to destroy as many of the cancer cells as possible while committing as little damage to the healthy cells as possible.
Radiation therapy is used different ways.

- **Destroy Tumors**
- **Shrink Tumors**
 - Pre / Post Surgery or Chemotherapy
 - Pre – reduce size for resection
 - Post – residual / microscopic
- **To reduce symptoms - Palliation**
 - Shrink tumors affecting quality of life, like a lung tumor that is causing shortness of breath or tumor causing compression.
Traditional Radiation Oncology

- **Photon Beam (X-Ray):**
 Energy: 6 MV and 15 MV

- **Electron Beam:**
 Energy: 6, 9, 12, 15 and 18 MeV
Radiation Oncology QA - Dosimetry

- Treatment is the point of no return.....

- Similar to a pharmacist checking a Rx

- QA is extremely important.....
 - Short Term: Disease Management
 - Long Term: Side Effects
IBA Dosimetry Product Line

- Medical Imaging
- Radiation Therapy
 - Photon
 - Electron
 - Proton
- Software
 - MyQA Product Suite
 - Machine QA
 - Patient QA
 - Real Time Analysis
 - Trending / Analytics
Detectors

- StarTrack
 - Machine QA
 - 452 Chambers
 - 5mm Resolution

- MatriXX
 - Machine QA
 - Patient QA
 - 1020 Chambers
 - 7.6mm Resolution
All QA applications **integrated**

Instant QA overview

Intuitive and unique interface

Simple and clear reporting

All data
- managed by **one Platform**
- saved into **one database** (SQL)
IBA Proton Dosimetry Product Line

- Beam Models
 - PBS
 - DS
- QA Equipment
 - Commissioning
- Patient QA
FROM COMMISSIONING TO PATIENT QA

Blue Phantom²

Commissioning

Machine QA

Patient QA

Stingray
Lynx

How it works

- **Scintillator**
 - Active surface: 30 x 30 cm
 - Gadolinium based

- **Mirror**

- **CCD Camera**
 - Resolution= 0.5 mm
 - 1024x1024, 12-bit
 - Controllable Iris
 - For beam current saturation control
 - Different modes
MyQA – Lynx Plugin
FROM COMMISSIONING TO PATIENT QA

Commissioning

Machine QA

Patient QA

Blue Phantom²

Lynx

Giraffe

Stingray

Zebra

Sphinx
Sphinx - MyQA
FROM COMMISSIONING TO PATIENT QA

Blue Phantom²

Lynx

Giraffe

MatriXX

Commissioning

Machine QA

Patient QA

Stingray

Zebra

Sphinx

DigiPhant
Customer Needs / Challenges

- **More Efficiency**
 - Less QA Time = More Patient Care Time

- **Peace of Mind**
 - SBRT
 - High Dose
 - Small Fractions
 - One incorrect treatment = 20% Error
Absolute and Relative Dosimetry

- AAPM TG 142 Protocol
- Overwhelming amount of QA for Physics teams
 - Daily, Weekly, etc.
 - kV, mV, CBCT, SRS, SBRT, etc.

- Water Phantoms
 - Cumbersome
 - Time consuming: Long setup and measurement time
 - Gold Standard
LINAC QA

- Needs
 - Equipment
 - Dosimetric
 - Imaging
 - Mechanics

- Challenges
 - Different Vendors
 - File Formats

- Solution?
 - ‘Standard’ Detectors
 - Single File Protocol
Patient Treatment QA - Pretreatment

- **Most Time Intensive QA**
 - Trend = Adopt Most Effective Method
 - Quick Verifications
 - EPID
 - Calibration Concerns by customers
 - Additional Measurements only when necessary (Europe)
 - Not currently strong in US
 - Mandatory
 - Reimbursed

- **Normal Fractionated IMRT**
 - Solutions are abundant
 - Rotational QA

- **Stereotactic Treatment**
 - Small Fields need small resolution
 - Measurement at Isocenter
 - Currently there are no good solutions
Patient Treatment QA – ‘Online’

- **EPIID**
 - Same concerns with calibration
 - 2D Analysis
 - Good for Patient positioning and Anatomy
 - Not good for dose distribution
 - Transmission Detectors
 - Measures’ ‘clean’ data without patient anatomy
 - Beam Attenuation
 - Multiple Vendors
 - Nominal Resolution
 - Pre-treatment measurement with phantom
 - No fluence map = No Dose
 - Log Files
 - Not real measurement?
 - Not independent of machine manufacturer under test
Patient QA – Data

How is it utilized?
- TPS
- QA Dose Engines
- Adaptive Radiation Therapy (Real Time)
 - Registration of Components
 - CBCT
 - Dose Distribution
 - Planning CT
- Leads to Automated Re-planning
- Requires more patient time
- Requires more CMD resources
Additional Challenges

- **Many Vendors**
 - Different File formats
 - Competition – leads to inability to work together for a solution
 - Proprietary Hardware / Software

- **MR Linacs**
 - Elekta
 - ViewRay

- **IT**
 - Network Concerns
 - Data Breaches
 - Wireless Connectivity
 - HIPAA

- **Cardiac Treatments**
Future?

- AI
- New Technologies
- More Automation
Thank you for your time!