PbWO4 Studies in 2014/2015 and Plan for 2015/2016

Summary of studies in 2014-2015

15 crystals were delivered from SIC in 2014 (#1-10 in spring & #11-15 in December)
 The measured dimensions of crystals are 20±0.15 mm × 20±0.15 mm × 200±0.15 mm.
 Visual inspections show that most of crystals were good quality, but some of them have small scratched on side or front surface.

• Optical properties of crystals

- At *JLab* the longitudinal and transverse transmittances for 15 crystals have been measured. The reproducibility of the measurements is on the order of a few percent, main uncertainty is crystal orientation. For most of crystals transmittance starts around 350 nm and reaches to ~90% at $\lambda > 500$ nm. The longitudinal transmittance (20 cm thickness) varies between 60% and 70% for most crystals at a wavelength 420 nm. One of the crystals (#14) shown a completely different behavior above 480 nm. The transmittance in the transverse direction (2 cm thickness) was measured at several distances ranging between 5 and 55 mm from the face of the crystal. The crystal-to-crystal variation of the transverse transmittance seems to be much less than what was observed for the longitudinal transmission. However, the transmittance of one of the crystals (#9) is significantly lower than that of the other crystals.
- *Giessen* studies show that longitudinal transmittance of blocks #2, 3, 6, 8 and #9 on average are lower by 10-15% than data measured at JLab. While, for transverse transmittance there are only small difference between Giessen and JLab data.
- *BNL* data show that longitudinal transmittance of blocks #7 and #15 are lower than data measured at JLab.
- *Caltech* studies show that sample #11 has significant scattering centers. Sample #5 shows better LT than sample #11 because of less scattering centers.
- A comparison *Caltech* and *JLab* data for the crystal (#5) shows that transmittance measured at Caltech with integrating sphere is higher than JLab.
- It is interesting to note that there seems to be a significant difference in the shape of the distributions between the *JLab* and *Giessen* in the region around 400 nm.

• Light yield

- At *Giessen* the light yield for a subset of 15 crystals (#2, 3, 6, 8 and #9) at room temperature (+18°C) measured and found on the order of 15-16 pe/MeV though some of crystals show a lower yield of only 12 pe/MeV.
- \circ *Giessen* data also show that the light yield increases by a factor of about three due to cooling to -25 °C.
- At \overline{CUA} setup based on radioactive source ²²Na (511 keV photons) have been used to study temperature dependence of the light yield. Data show that LY increases with temperature by ~2.4% per 1°C which is consistent with CMS and Giessen data.
- *Caltech* studies show that light output of crystals #5 (15.6 p.e./MeV) and #11 (12.4 p.e./MeV) are better than CMS SIC (11.4 p.e./MeV).

• Timing

Caltech studies show that two crystals (#5 and #11) are faster than CMS PWO crystals. Fraction of Light Output (LO) in 50/100 ns for sample #5 and #11 is 91/99%, while for CMS crystals is 84/96%.

• Radiation hardness

- ο At *JLab* irradiation using γ-source (single source 137 Cs) with a dose rate of ~260 rad/h. No sign of radiation damage was observed up to ~300 krad
- At *Idaho* irradiation with 20 MeV electron beam at dose rate 1.3 Mrad/h show high resistance of the SIC crystals. The transmittance of some of crystals (#2, 4 and #8) changed ~15% after accumulated dose 432 krad (at dose rate of 1.3 Mrad/h), while others (#3, 5 and #6) do not seems show any effects of radiation damage. To minimize spontaneous recovery effect all transmittance measurements were carried out 10 minutes after exposures. For irradiation at dose rate 1.3 Mrad/h for 20 min exposure the temperature near the crystal front increased from ~74°F to ~98°F. For similar exposure time at dose rate 2.6 Mrad/h the temperature increases from 76°F to 115°F resulting in crystal damage.
- At *Giessen* the longitudinal transmittance for subset of crystals (#2, 3, 6, 8 and #9) was determined before and after gamma irradiation (5 radioactive sources ⁶⁰Co) with an integral dose of 30 Gy within 15 minutes. The impact of radiation effects were quantified in terms of the change in the absorption coefficient *k*, and found to be from $dk\sim0.4 m^{-1}$ (crystal #03) to $\sim1.3 m^{-1}$ (crystal #02), which is better than CMS quality requirement ($\sim1.6 m^{-1}$).

• Curing

- IR curing with 4 LEDs (950 nm) at current 75 mA and distance 1 cm for 12 hrs
 Blue light curing with 4 LEDs (360 nm) at current 50 mA for 3 hrs
- Curing strategy does not seem to recover the optical quality of the crystal #2 irradiated at ~2 Mrad radiation dose.
- Thermal annealing for 10 hrs at 200°C (with ramp up-down rate 20°C/h) have been performed for all 15 crystals.

Summary of 2014/2015 studies

- \circ Our studies of a set of fifteen crystals produced by SIC in 2014 seem to indicate that the overall quality mostly conform to CMS/PANDA requirements.
- **The optical transmittance seems consistent with CMS quality** and relatively uniform along the crystals. However, there is a global variation from crystal to crystal on the order of 20%.
- The light yield of the crystals also seems to be consistent with CMS quality standards (12-16 p.e./MeV).
- However, understanding the effect of systematics on the optical measurements is important for the interpretation of crystal quality.
- Results from Caltech suggest that the measured values of the transmittance are higher than those for JLab measurement.
- Results from measurements at Giessen and BNL show similar features in that the measured values of the transmittance are lower than those for the JLab measurement.
- \circ A quantitative analysis of the homogeneity of the crystals must be done to fully characterize the crystal quality achievable.

Plan for 2015/2016

Note, 30 more crystals were ordered from SIC in spring 2015

- Need full information about Composition of the crystals
 - Chemical composition of raw materials
 - Details of growing process. (Are all crystals made from the same raw material?)

• Check Geometrical accuracy and surface quality of the crystals

- o Visual inspection, cracks
- Tolerance in dimensions
- o Surface quality (roughness)

• Check crystals intrinsic radioactivity

• Activity of the crystals and decay products (in a good shielded low background box)

• Light yield measurements

- Photon per 1 MeV
- Temperature dependence

• Timing quality

o LY(100 ns)/LY(1 μs)

Optical Transmission

- o Study accuracy of the measurements
- o Longitudinal transmission
- Transverse transmission (at 5-6 positions along the crystal)

Radiation hardness

- o Irradiation with γ -source
- Irradiation with electron beam
- o Transmission measurements before and after irradiation

• Spontaneous recovery of radiation damage and curing

- Spontaneous recovery of the radiation induced damage (dk)
- Blue and Infra-red curing
- Photo-sensors for NPS (selection of option)
 - o Phototube: geometric efficiency, QE, Gain, dark current, rate/timing, price/channel
 - o LAAPD: geometric efficiency, QE, Gain, dark current, rate/timing, price/channel

• NPS prototype tests

- o Improve/Modify existing 3×3 prototype or build new 5×5 prototype
- Study energy resolution
- Calibration and monitoring
- o Temperature-controlled frame

PbWO4 crystal quality specifications for mass production order

Parameter Unit	NPS NPS	G CMS PANDA
----------------	---------	-------------

		Required	Acceptable	Limit	Limit
Light Yield (LY) at RT	pe/MeV	≥15	≥10	≥8	≥16
(for all sides polished crystals)					
LY uniformity between blocks	%	10%	20%		
LY(100ns)/LY(1µs)	%	>95	>90	>90	>90
Longitudinal Transmission					
at λ=360 nm	%			≥25	≥35
at λ =420 nm	%			≥55	≥60
at λ=620 nm	%			≥65	≥70
Transverse Transmission and	%	10	15		
LY uniformity along crystal					
Inhomogeneity of Transverse	nm	≤5	≤10	≤3	≤3
Transmission $\Delta\lambda$ at T=50%					
Induced radiation absorption					
coefficient Δk at λ =420 nm and	m^{-1}	<1.0	<1.5	≤1.6	≤1.1
RT, for integral dose >100 Gy					
Mean value of dk	m ⁻¹	≤0.75	≤1.0	≤1.5	≤0.75
Tolerance in Length	μm	≤±100 -	≤±150	+0., -100	±50
Tolerance in sides	μm	≤±50	≤±100	≤ ±50	±50
Surface polished, roughness Ra	μm	≤0.02	≤0.05	≤0.02	
Rectangularity (90°)	degree				<0.01
Purity specific. (raw material)				5N-6N	
Mo contamination	ppm	<10		<10	<1
La, Y, Nb, Lu contamination	ppm	?		≤100	≤40