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Abstract

We propose to measure Timelike Compton Scattering (TCS) off the proton using a transversely po-
larized target. TCS reaction corresponds to the scattering of a real photon off a quark, followed by
the emission of a high virtuality photon, which decays into a lepton pair. TCS can be parametrized
by Generalized Parton Distributions (GPDs), containing information about the transverse spatial
distribution of quarks and their longitudinal momentum inside the proton. Thanks to a trans-
versely polarized proton target and a real circularly polarized photon beam, we can access 4 inde-
pendent observables sensitive to GPDs, in particular the GPD E. This experiment will also allow
for demonstrating GPDs universality by comparison of GPDs extracted independently from other
reactions, such as Deeply Virtual Compton Scattering.
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1 Introduction

The Timelike Compton Scattering (TCS) process corresponds to the exclusive photoproduction of
a lepton pair with exchange of a high virtuality photon. A real photon is scattered off a quark of
the nucleon, and a high virtuality photon is emitted, then decays into a lepton pair (γN ↪→ γ∗N ′ →
e+e−N ′, Fig. 1). Typically, the photon virtuality Q′2 = +q′2 = (k − k′)2 (where q’, k, k’ are the
4-momenta of the virtual photon, the electron and the positron respectively), is greater than ∼ 1
GeV2 to allow for factorization of the TCS amplitude between a hard part, calculable from per-
turbative QED (upper part of the diagram 1) and a soft QCD non perturbative part (lower part
of the diagram 1). TCS is sensitive to the transverse spatial distribution of partons in the nucleon
and the correlation with their longitudinal momentum. It can be parametrized by Generalized
Parton Distributions (GPDs), which have been introduced in [1, 2, 3]. Assuming massless quarks,
at QCD leading order and leading twist, we can parametrize TCS with 4 helicity conserving quark
GPDs: H, E, H̃, Ẽ. They correspond to 4 independent helicity-spin transitions between the initial
quark-proton system and the final one, and are the Fourier transform of the QCD matrix element
of the soft part of the TCS amplitude. Given the kinematic domain accessible at JLab, we neglect
GPDs of gluons. At leading order, the GPDs depend on 3 independent variables: x is the longi-
tudinal momentum fraction of the nucleon momentum carried by the quark, ξ is proportionnal to
the longitudinal momentum transfer to the quark, and t is the square 4-momentum transfer to the
nucleon, i.e. t=(p-p’)2, where p and p’ are the 4-momenta of the incoming and outgoing nucleon
respectively. We refer to the reviews [4, 5, 3, 6] for details about GPD formalism and physics inter-
ests.
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Figure 1: TCS leading order and leading twist handbag diagrams.

TCS interfers with a Bethe-Heitler like process (BH), where the incoming real photon splits
into a lepton pair in the nucleon field (Fig. 2). BH depends on the nucleon Form Factors (FFs)
and is not sensitive to GPDs. Since TCS and BH leads to the same final state, experimental mea-
surements of the hard exclusive lepton pair photoproduction reaction contain the two processes
and their interference, and cannot be measured separately. As it will be discussed later, the BH
amplitude is always largely dominant compared to the TCS one at JLab kinematics. However,
the interference between BH and TCS is enhancing TCS, which would have a rather small cross
section otherwise. Several spin dependent observables (from polarized beam and/or target) allow
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for accessing directly or indirectly the TCS+BH interference term, and indeed information about
GPDs, as discussed in [12, 13]. Measuring several independent observables allow for extracting
the GPDs, as it will be shown later. We don’t access directly GPDs, due to their x dependence is
contained into integrals in the amplitudes, but rather we can access Compton Form Factors (CFFs),
which are complex functions of GPDs depending on ξ and t (at LO). In our notations, we associate
2 CFFs to each GPD, corresponding to the imaginary and the real part of the CFFs, such as the CFF
=H and <H are functions of the GPD H.

N’ (p’)N (p)

γ (q)

∗γ (q’)

(k’)+e

(k)-e

N’ (p’)N (p)

γ (q)

∗γ (q’)

(k)-e

(k’)+e

Figure 2: Bethe-Heitler process interfering with TCS, leading order and leading twist diagrams.
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Figure 3: DVCS leading order and leading twist handbag diagrams.

An analogy can be made between TCS and Deeply Virtual Compton Scattering (DVCS = eN ↪→
γ∗N → e′N ′γ - Fig. 3), which corresponds to the scattering of a high virtuality photon, coming
from a lepton beam, off a quark of the nucleon. DVCS has been intensively studied over the past
15 years, and measurements of DVCS observables already lead to DVCS CFFs and GPDs measure-
ments, constraining GPD models [6]. However, the real part of DVCS CFFs is poorly constrained
by existing measurements. While different models are in good agreement for imaginary part of
CFFs, predictions differ on the real part. In addition, the GPD E is poorly constrained and there
is a real need of independent measurements sensitive to it. GPD E contain information about the
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quarks angular momenta and their distribution in a transversely polarized nucleon. Ji sum rule [2]
relates GPDs H and E to the nucleon orbital momentum, and shows that it is possible to study the
quark and nucleon spin correlations thanks to GPDs in addition to inclusive and semi-inclusive
measurements [?]. Ji sum rule for quark GPDs reads

Jq(t = 0) =
1

2

∫
dx x [Hq(x, ξ, t = 0) + Eq(x, ξ, t = 0)] =

1

2
∆Σ + Lq (∀ξ), (1)

where Lq is the quark angular momentum and ∆Σ is the fraction of the nucleon spin carried by
the quarks (∆Σ ≈ 0.3). Indeed, there is a strong interest in measuring GPD E to understand the
quark orbital momentum contribution to the proton spin, i.e. to understand how the nucleon spin
is distributed within its constituants.

As demonstrated in [5], DVCS and TCS amplitudes are complex conjugate at leading order.
Both processes access the same GPDs at the same kinematic points (ξ, t), and their CFFs are com-
plex conjugates. Demonstrating the universality of QCD structure functions such as GPDs is a
milestone. Comparing GPDs extracted from DVCS (spacelike process) to GPDs extracted from
TCS (timelike process) is therefore one of the most important result we can obtain from our TCS
experiment in addition to other independent DVCS measurement. We will therefore demonstrate
the feasibility of extracting CFFs from TCS observables, at a level comparable with DVCS. Fur-
thermore, as the only soft part involved in the DVCS and TCS processes corresponds to the GPDs,
these two processes can be seen as the cleanest one to access GPDs without additional unknown.

Assuming, or after demonstrating, that GPDs are universal, constraining GPD E from TCS
measurements will be complementary to the existing and planned measurements of DVCS in the
JLab 12 GeV program. Indeed, under the assumption of GPD universality and neglecting higher
twist and higher order effects in DVCS and TCS, it is possible to complementarly constrain GPDs
from DVCS and from TCS measurement as we will demonstrate. TCS observables, particularly
the transversely polarized target cross sections, bring new independent information and allow to
extract all proton CFFs simultenaously in a multi-parameters, multi-observables CFFs fitting ap-
proach.

In the following, we will present the TCS formalism and the observables we intend to measure.
We will discuss the impact of the measurements and the projection of experimental uncertainties.
We propose an experimental setup, which use an untagged bremsstrahlung photon beam from
the Compact Photon Source [32], the UVa transvesally polarized ammonia NH3 target [28, 29],
detectors for the recoil proton detection and a pair of electromagnetic calorimeters, similar than
the one of the Neutral Particle Spectrometer project [].
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Figure 4: Scheme of the TCS reaction in the nucleon-photon center of mass frame (left panel) and in
the final photon rest frame (right panel). The momentum of incoming and outgoing nucleon, real
and virtual photon, electron and positron are indicated by letters p, p’, q, q’, k and k’, respectively.
Left panel: we indicated the angle φCM between the lepton decay plane and the reaction plane. We
also indicated by red arrows the possible orientations of beam and target spin. Right panel: φCM
angle is conserved in the boost from γN to γ∗ C.M. frames. θCM is the angle between the lepton
direction and the boost axis, defined by the γ∗ direction in the γN C.M. frame.

2 Physics case

2.1 TCS formalism

The unpolarized TCS+BH cross section depends on five independent variables. We express it ei-
ther as a function of the beam energy (Eγ) either as a function of the longitudinal momentum
transfer ξ = Q′2

2s−Q′2 , where s=(p+q)2 is the squared C.M. energy of the reaction. The definition of ξ
is valid at the asymptotic limit (t/Q’2 → 0) (we refer to [12] for details). We also express the cross
section as a function of the momentum transfer squared t, the virtuality of the final photon Q’2,
and the polar and azimuthal angles of the electron in the C.M. frame of the lepton pair versus the
reaction plane (the γ, γ∗ plane). These angles are represented on Fig. 4. Left panel is a scheme
of the reaction in the C.M. frame of the incoming photon and proton. The variables and angles
represented in the scheme are explicit in the legend. Fig. 4 (right panel) shows the angles in the
virtual photon C.M. frame. The longitudinal axis for the boost between the two frames is used as
reference for the final electron polar angle.

At fixed beam energy (or fix ξ), averaging over the beam, the initial and the final nucleon
helicities, we express the 4-differential BH+TCS unpolarized cross section as

d4σ

dQ′2dtdΩ
(γp→ p′e+e−) =

1

2π4

1

64

1

(2mNEγ)2
| TBH + T TCS |2,
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where the | TBH + T TCS |2 term corresponds to the BH and TCS amplitudes. and mN is the nu-
cleon mass. The polarized nucleon cross sections also depends on the angles between the nucleon
spin direction and the reaction plane, φS and θS We display in Fig. 4 the particular cases of spin
along the z-axis (θS = 0◦), along the x-axis (θS = 90◦ and φS = 0◦) and along the y-axis (θS = 90◦

and φS = 90◦).

The TCS amplitude reads

T TCS = − e
3

q′2
ū(k) γν v(k′) εµ(q)HTCS

µν , (2)

with, at the asymptotic limit,

HTCS
µν (3)

=
1

2
(−gµν)⊥

1∫
−1

dx

(
1

x− ξ − iε
+

1

x+ ξ + iε

)

.

(
H(x, ξ, t)ū(p′)/nu(p) + E(x, ξ, t)ū(p′)iσαβnα

∆β

2m
u(p)

)

− i
2

(ενµ)⊥

1∫
−1

dx

(
1

x− ξ − iε
− 1

x+ ξ + iε

)

.

(
H̃(x, ξ, t)ū(p′)/nγ5 u(p) + Ẽ(x, ξ, t)ū(p′)γ5

∆.n

2m
u(p)

)
,

where we used the metric:

(−gµν)⊥ = −gµν + p̃µnν + p̃νnµ , (4)
(ενµ)⊥ = ενµαβ n

α p̃β.

The GPDs entering Eq. 3 are proton GPDs, i.e. they read, in terms of quark flavors:

HTCS(x, ξ, t) =
4

9
Hu/p +

1

9
Hd/p +

1

9
Hs/p. (5)

We use the decomposition into GPDs and notations from Ji [?], and the GPD parametrizations
from VGG model [7, 8, 4, 9], which are summarized in Ref. [6] and based on the Radyushkin
double-distribution ansatz for the (x,ξ)-dependence [10, 11, 1] and on the Reggeized ansatz for the
t-distribution [4, 9].

The BH amplitude can be expressed as

TBH = − e3

∆2
N̄ Γν N εµ(q) ū(k)

(
γµ

/k − /q
(k − q)2

γν + γν
/q − /k′

(q − k′)2
γµ

)
v(k′), (6)

where the 4-vectors q, k, k’ respectively correspond to the photon, the electron and the positron.
N corresponds to the nucleon spinor and ∆ is the proton momentum transfer. The virtual photon-
proton electromagnetic vertex matrix can be expressed as a function of Dirac (F1) and Pauli (F2)
form factors

Γν = γν F1(t) +
iσνρ∆ρ

2mN
F2(t), (7)

The BH amplitude depends on the proton Dirac and Pauli form factors F1(t) and F2(t). We use the
electric form factor parametrization from [18] and magnetic form factor parametrization from [19].
We refer for more details about the formalism used to [12].
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2.2 Observables

2.2.1 Unpolarized cross section

Using a real circularly polarized photon beam and a transversely polarized target, there are 4
independent observables that can be accessed from the TCS+BH reaction. We display on Fig. 5 the
TCS and BH unpolarized cross section as a function of φ for various θ angles. In the analysis, we
will integrate the cross sections over θ in a range depending on the kinematics (this point will be
discussed in section 4.2).

Figure 5: BH and TCS cross sections as a function of φ at Q′2 = 7 GeV2, -t=0.4 GeV2, ξ=0.2, for
θCM = 10◦, θCM = 170◦ and θCM = 90◦.

For polarization observables, we use the following notations:

• We use the notation for an asymmetry APP ′ , with two indices P and P ′. The first index P
refers to the polarization type of the beam: U for an unpolarized beam, P = � and for a
circularly polarized beam. The second index P ′ refers to the polarization of the target and
can take the values U (unpolarized), x (φS = 0◦), y (φS = 90◦), or T for any generic value of
φS .

• Similarly, we use the notation σPP ′ for polarized cross sections and ∆σPP ′ for polarized
cross section differences, defined as the difference of polarized cross sections σPP ′ , with spin
vectors pointing in opposite directions.

2.2.2 Circularly polarized beam spin asymmetry

We define the circularly polarized beam spin asymmetry as

A�U =
σ+ − σ−

σ+ + σ−
, (8)

where σ± stand for the 4-fold differential cross sections dσ
dQ′2 dt dφ d(cosθ)

for the two photon circular
polarization states (right and left polarized). We display in Fig. 6 (top panel) our results for A�U
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as a function of φ at Q′2 = 7 GeV2, ξ = 0.2, −t = 0.4 GeV2 for θ integrated over [45◦, 135◦]. We
observe that the BH doesn’t produce any asymmetry. Any signal therefore reflects a contribution
from TCS. This is due to the fact that this observable is sensitive to the imaginary part of the am-
plitude, and that the BH amplitude is purely real. Since the BH does not produce on its own an
asymmetry, we show in [12] the integration over θ does not strongly reduce the signal, and that we
obtain a relatively large (∼20%) sin(φ)-shape asymmetry. The result is displayed using different
GPDs parametrizations for TCS. In Fig. ??, we show for ξ = 0.2, Q′2 = 7 GeV2, φ = 90◦ and θ in-
tegrated over [45◦, 135◦], the t-dependence of A�U and its sensitivity to different GPDs. We notice
that the magnitude of A�U increases with |t| and that there is a sensitivity of this observable to all
four GPDs, especially at large | t |. We also display in this figure our calculation with the factor-
ized ansatz for the t-dependence of the H GPD in order to illustrate the model-dependence of our
results. Since this beam spin asymmetry is sensitive to the imaginary part of TCS+BH amplitudes,
its GPD dependence is contained in the imaginary part of CFFs.
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Figure 6: Left panel: The A�U for θ ∈ [45◦, 135◦] using differents GPDs parametrizations for TCS.
The calculations are done for Q′2 = 7 GeV2, ξ = 0.2, −t = 0.4 GeV2. Right panel: The A�U
asymmetry as a function of t for BH+TCS at ξ = 0.2, Q′2 = 7 GeV2, φ = 90◦ and θ integrated over
[45◦, 135◦]. TCS is calculated with different GPDs. From [].

2.2.3 Transversely polarized target spin asymmetries

We define the transversely polarized target spin asymmetries as

AUi =
σ+ − σ−

σ+ + σ−
, (9)

where σ± stands for the 4-fold differential cross sections dσ
dQ′2 dt dφ d(cosθ)

for the two target spin ori-
entations + and − along the axis i = x, y or any other φS direction with θS = 90◦.

We show in Fig. 7 our results for the φ-dependence of AUx and AUy for Q′2 = 7 GeV2, ξ = 0.2,
−t = 0.4 GeV2 and for θ integrated over [π4 ,

3π
4 ]. The TCS is calculated with differents GPDs
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parametrizations. We observe sinφ or cosφ shapes with amplitudes between 10 and 15%. Like for
A�U , the BH doesn’t produce any asymmetry and any non-zero asymmetry directly reflects the
strength of GPDs. We show in Fig. 8 the t-dependence ofAUx andAUy at φ=90◦ and 0◦ respectively,
for the kinematics ξ = 0.2, Q′2 = 7 GeV2 and θ integrated over [π4 ,

3π
4 ]. In this figure, TCS is

calculated with different GPDs. Depending on the value of t, the two asymmetries are sensitive
to the GPDs H , H̃ and E in various proportions. We also display in this figure our calculations
with the factorized ansatz for the t-dependence of the H GPD in order to illustrate the model-
dependence of our results. Experimentaly, we access different values of φS , which are taken into
account in the calculation of the polarized cross sections for our projections. This dependence will
be discussed in the next paragraph.
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Figure 7: The AUx (left panel) and AUy (right panel) asymmetries as a function of φ for ξ = 0.2,
Q′2 = 7 GeV2,−t = 0.4 GeV2 and for θ integrated over [π4 ,

3π
4 ]. The TCS is calculated with differents

GPDs parametrizations.

2.2.4 Relations between cross sections and Compton Form Factors for TCS and DVCS

Analytic equations have been developped for the unpolarized and circularly beam polarized TCS
[?]. The squared TCS amplitude summed over the photons spin states is expressed as a function
of CFFs [?] and is proportionnal to (using our notations)

TCS2 ∝ (1− ξ2)
(
|H|2 + |H̃|2

)
− 2ξ2<

(
HE + H̃Ẽ

)
, (10)

−(ξ2 +
t

4m2
N

)|E|2 − ξ2 t

4m2
N

|Ẽ |2.

The dominant sin(φ) amplitude term (M−−) of the circularly beam polarized cross section decom-
poses into CFFs and FFs and is proportionnal to [?]

M−− ∝ F1H− ξ(F1 + F2)H̃ − t

4m2
N

F2E . (11)

One can notice the similitudes with the DVCS polarized cross sections decomposition into CFFs
(see the review [15]). However, the CFFs dependent terms in TCS observables are occuring with
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Figure 8: The AUx (left panel) and AUy (right panel) asymmetries as a function of t, at φ=90◦, 0◦

and 90◦ respectively, and for ξ = 0.2, Q′2 = 7 GeV2, −t = 0.4 GeV2 and θ integrated over [π4 ,
3π
4 ].

TCS is calculated with different GPDs.

different kinematical factors compare to DVCS. As demonstrated in [], the leading order and lead-
ing twist DVCS and TCS amplitudes are similar up to a change of sign of the imaginary part and
a reversal of the photon polarization, which proves that DVCS and TCS depend on the same CFFs
and carry the same information on GPDs. We therefore expect the DVCS and TCS observables be-
ing correlated at this order: the TCS unpolarized cross section is partially correlated to the DVCS
one, the TCS circularly polarized beam spin asymmetries are correlated to the DVCS lepton beam
polarization asymmetries and access the imaginary part of amplitudes, the DVCS and TCS single
target spin asymmetries are correlated and access the imaginary part of amplitudes, the DVCS and
TCS (with circularly polarized photon) double spin asymmetries are correlated and access the real
part of amplitudes.

There is no reference displaying the CFF dependences of the transversely polarized TCS ob-
servables. Our calculation show a first order sin(φ−φS) dependence of the single spin asymmetries
which can be related to the DVCS φ and φS dependence of transverse target spin asymmetries (up
to a sign change). DVCS phenomenology [16], results from the HERMES collaboration on trans-
versely polarized DVCS, our results on GPD dependence of AUT (Fig. ??) suggest an enhanced
sensitivity to =E from the (cos(φ)sin(φ− φS)) moment of the transverse target spin asymmetry.

2.2.5 Higher order effects and impact on the observables

We neglected in the above discussion the impact of higher twist and next to leading order effects
on the observables, and on the possibility to access the same CFFs with DVCS and TCS. Higher
twist effects have been found to be non negligible from recent JLab DVCS experiments [?]. In
TCS, we show in [12] that the impact on the observables is expected to be small compare to their
GPD dependencies. However, these results didn’t included all corrections and no experimental
measurement has been published yet for TCS. Next to leading order calculations of DVCS+BH
and TCS+BH show a different NLO structure for the two reactions [], and small but non negligible
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effects are expected on the observables. While higher twist and higher order effects may not be
suppressed at JLab kinematic, we expect them to not affect much our conclusions in regard to
expected uncertainties on measured observables, and we expect being able to combine DVCS and
TCS fits in a multi-observables CFFs fitting approach. If these effects are found to be large, we may
observe some difference between DVCS and TCS. Some of the higher twist terms are of opposite
sign, which may in this case provide a good opportunity to study these effects.

2.3 Extraction of CFFs from TCS measurements and impact for GPDs

2.3.1 Framework

We base the discussion in the current section under the assumption of negligible higher order and
higher twist effects. In this case, we access the same CFFs from DVCS and TCS, and can either
access the CFFs independently from the two reactions and compare the results, either combine
DVCS and TCS observables to a multi-observable fitting.

We show in Fig. 9 the kinematical domain which can be accessed for DVCS and TCS. We display
in blue the (ξ,Q′2) phase space accessible for TCS with an 11 GeV electron beam, assuming that the
real photon is provided by bremsstrahlung of the electron and that its energy is inEγ ∈ [5, 11] GeV.
We have applied two cuts: Q′2 ∈ [4, 9] GeV2 and−t ∈ [0, 1] GeV2. The motivations are respectively
to stay in the region free of vector mesons resonances and minimize higher twist corrections to the
TCS formalism, which grow with t

Q′2 . We overlap in red in this same figure the (ξ, Q2) phase space
accessible with an 11 GeV beam for DVCS. We have applied the cuts: −t ∈ [0, 1] GeV2, for the same
reason as for TCS, and s > 4 GeV2 in order to stay above the baryon resonance region. One notes
the large intersection between the DVCS and the TCS phase spaces.

Figure 9: Kinematical domain accessible as a function of ξ and Q2 for DVCS (red plain surface)
and in ξ and Q′2 for TCS (blue dotted surface) with an 11 GeV electron beam. For DVCS, the
cuts −t ∈ [0, 1] GeV2 and s > 4 GeV2 have been applied and for TCS, the cuts Eγ ∈ [5, 11] GeV,
−t ∈ [0, 1] GeV2 and Q′2 ∈ [4, 9] GeV2 have been applied.
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2.3.2 Fitting method

We generated DVCS+BH and TCS+BH pseudo-data sets based on VGG model GPDs and calcu-
lations [7, 8, 9, 4, 12]. The cross sections are calculated at the same t and ξ for DVCS and TCS:
DVCS+BH distributions are generated at t=-0.2 GeV2, ξ = 0.15, Q’2 = 2.5 GeV2, E(beam) = 11 GeV,
TCS+BH distributions are generated at t=-0.2 GeV2, ξ = 0.15, Q2 = 4.5 GeV2, θCM = 90◦. The dis-
tributions are presented as a function of 16 bins in φ. In case of transversally polarized proton, we
generated the polarized cross sections at φS = 0◦ (spin along x-axis) and at φS = 90◦ (beam along
y-axis). We extracted the CFFs according to the fitting method from [14]. In order to match the
uncertainties expected in short term experiments at JLab, and to compare DVCS and TCS in the
same conditions, we set relative errors of 5% per bin in φ for both DVCS+BH and TCS+BH unpo-
larized cross sections. We set relative errors of 7% per bin in φ for all the polarized cross sections.
We assume the same uncertainties for both reaction in order to compare the sensitivities to CFFs,
even though DVCS+BH can be measured with a better accuracy thanks to its larger cross section.
The free parameters of the fits are the 7 Compton Form Factors: =(H), =(H̃), =(E), <(H), <(H̃),
<(E), <(Ẽ). Figures of the fitted distributions and more details are given in Appendix 7.

We performed fits on the sets of observables presented on table 1. For configurations 1 to 5, we
systematically performed fits for DVCS and TCS independently, and combining both reactions.
For the configurations 6, 6’, 6”, we fitted observables from DVCS, TCS, DVCS+TCS, respectively
(the symbol "x" in the table indicate configurations that are not fitted). In the table we used the
notations corresponding to DVCS observables: the first index "L" for designing DVCS+BH beam
spin asymmetries should be replace by an index "�" in case of TCS (circularly polarized beam).
We indicated experimental Halls in JLab who have experiments accessing the different observ-
ables. Some of these experiments are running or approved to run in a short term. However, the
projected uncertainties of these experiments are not corresponding to the one assumed in this ex-
ercise, done in the purpose of comparing DVCS and TCS in the same conditions.

Set of observables DVCS TCS DVCS+TCS # independent obs.
(DVCS/TCS/both)

1) σ, ∆σLU A, B, C A, B, C A, B, C 2/2/2
2) σ, ∆σLU , ∆σUL, ∆σLL B - - 4/4/4
3) σ, ∆σLU , ∆σUT (x2) - C - 4/4/4
4) σ, ∆σLU , ∆σUT (x2) - - - 6/6/6
∆σUL, ∆σLL
5) σ, ∆σLU , ∆σUT (x2) - - - 8/8/8
∆σUL, ∆σLL, ∆σLT (x2)
6) σ, ∆σLU , ∆σC - x x 3 (DVCS)
6’) σ, ∆σ�U , ∆σLU x D x 3 (TCS)
6”) 2) of DVCS + 3) of TCS x x B+C 6 (DVCS+TCS)

Table 1: First column: set of combined observables for DVCS, TCS and DVCS+TCS fitting. Sec-
ond to fourth column: current and future experiments at JLab accessing these observables (letters
indicate experimental Halls). Note that the projected uncertainties of these experiments are not
corresponding to the one assumed in this exercise, done in the purpose of comparing DVCS and
TCS in the same conditions. Fifth column: number of uncorrelated observables.
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The extracted CFF uncertainties are presented on Fig. 10 (imaginary parts) and 11 (real parts).
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Figure 10: Extracted coefficients for imaginary part of CFFs, defined as fit result * generated
CFF. Left column: Im(H), central column: Im(H̃), right column: Im(E). Top: extracted from DVCS,
central row: extracted from TCS, bottom row: extracted from DVCS+TCS. Set of observable indices
(from 1 to 6) are detailed in table 1. The scale is zoomed, fitting coefficient variation has been
limited to [−5, 5] time the generated one. Generated coefficient (1) is indicated by the black dashed
line.

2.3.3 Interpretation on fitting DVCS or TCS independently

Measuring only the unpolarized cross section and beam spin asymmetry either from DVCS+BH
or from TCS+BH (with a circularly polarized beam for TCS) allow for extracting =H, =H̃, and
<Hwith a good enough precision for contributing to constraint GPD models and for comparisons
between the two processes (Fig. 12). Having in addition the longitudinal target spin asymmetry
allow for constraining better these CFFs, in particular =H̃, and allow for bringing some constraint
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Figure 11: Extracted coefficients for real part of CFFs, defined as fit result * generated CFF. Left
column: Re(H), central column: Re(H̃), right column: Re(E). Top: extracted from DVCS, central
row: extracted from TCS, bottom row: extracted from DVCS+TCS. Set of observable indices (from
1 to 6) are detailed in table 1. Fitting coefficient variation has been limited to [−5, 5] times the
generated one. These limits are indicated by the red dashed lines. Generated coefficient (1) is
indicated by the black dashed line.
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on <H̃.

Having in addition to the unpolarized cross section and to the beam spin asymmetry, the two
independent transverse target spin asymmetry allow to constraint in addition=E (Fig. 12). Thanks
to the correlations between the CFFs and the fact of having more independent observables to con-
straint the fits, a much better precision is reached for <H compared to cases without transverse
target asymmetries (Fig. 12).

  

Im(H) Re(H) Im(H) Re(H)

Im(H) Re(H) Im(H) Im(H) Re(H) Im(H)~ ~
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LU

 
Δσ

UX
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1) σ, Δσ
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Figure 12: Extracted CFFs from DVCS (left column) and TCS (right column), using σ and ∆σLU
(top row), using σ, ∆σLU , ∆σUL, ∆σLL (center row) and using σ, ∆σLU , ∆σUX , ∆σUY (bottom
row).

Fitting DVCS+BH or TCS+BH unpolarized cross sections, beam polarized cross sections, 3 sin-
gle target polarized cross sections (1 longitudinal, 2 transverse), and the double beam and longi-
tudinaly polarized target cross sections (case 4) bring constraint to =H, =H̃, =E , <H, <H̃ and <E .
Adding the double beam and transverse target spin asymmetries with the same precision (case 5)
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will strongly shrink the uncertainties for all the CFFs and avoid incorrect solutions to the problem,
thanks to it being overconstrained. The CFF<Ẽ is constrain thanks to correlations with other CFFs.
This case is not corresponding to any short term DVCS or TCS experiments, and represent an ideal
case of what can be achieved according to the uncertainties we set and the method.

We notice that in a scenario of same uncertainties on DVCS and TCS observables, the sensitivi-
ties to CFFs of DVCS observables are stronger the sensitivities of TCS observables. Indeed, TCS is
more suppressed than DVCS compared to the associated BH process in the reaction. However, we
can constraint CFFs from the two reactions independently and compare the results to demonstrate
GPDs universality.

2.3.4 Interpretation on fitting simulteanously DVCS and TCS

In the first 5 data sets, we fitted simulteanously correlated observables from DVCS and from TCS.
These simultenaous fits allow for about a factor of 2 reduction of error bars compared to the case of
fitting only DVCS. This reduction is larger than statistically expected, due to the fact that the unpo-
larized cross sections are not fully correlated and therefore they bring both some new information.
Combining observables from both reactions can help at a non negligible level in constraining GPD
models by reducing uncertainty and allowing for extraction of CFFs which would be hard to con-
straint otherwise.

The 6” data set is a combination of DVCS 2d data set and TCS 3d data set, corresponding to
short term approved or proposed experiments at JLab. Independent information is brought by the
different target polarization accessible in these experiments. Combining these data sets allow for
constraining at the same time all CFFs.

Even thought simultenaous fits are assuming GPDs universality, they allow for bringing strong
constrain to GPD models with short term upcoming DVCS and TCS experiments, compared to
measurement from DVCS only.

2.3.5 Neutron measurements and flavor decomposition for the GPDs

The results of sec. 2.3.3 demonstrate the feasibility of accessing CFFs and GPDs for the proton from
DVCS and TCS measurements. However, for interpretations, GPDs have to be decomposed into
flavor, which is possible thanks to measurements of the GPDs of the neutron in other experiments
[] in addition to the measurements off the proton. In particular, the CFF =E for the neutron is
accessible with the unpolarized and the beam polarized DVCS cross section measurements [] and
the longitudinaly polarized experiment [] using the CLAS12 spectrometer. As shown on Fig. 13,
the neutron DVCS measurement will complement the TCS measurement we are proposing for the
flavor decomposition of the GPD E, with uncertainties on the CFF at the same level.
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Figure 13: Extracted CFFs from DVCS (left column) and TCS (right column) off the neutron, using
σ, ∆σLU , ∆σUL, ∆σLL.
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3 Experimental setup

3.1 The concept of setup

The setup is aimed at detection of decay lepton pair and recoil proton from BH/TCS events in
triple coincidence, in forward kinematics. The key components of the setup are high intensity
photon source, transversely polarized proton target, and a set of detectors for proton and lepton
detection and identification.

The experiment will utilize untagged bremsstrahlung photon beam from Hermetic Compact
Photon Source (CPS) ([32]) on the UVA polarized ammonia target ([28, 29]). The CPS is capa-
ble of delivering up to 1.5 × 1012 photons per second with primary CEBAF electron beam of 11
GeV energy and 2.5 µA intensity, within the energy range from 5.5 to 11 GeV ([33]). The photon
beam has clear advantage over the electron beam when using the polarized target: less heat load,
higher polarization and less depolarization of the target material. This boosts figure of merit for
the beam – polarized target combination by factor of ∼30. The luminosity for combination may
reach 1035cm−2sec−1.

To provide transverse polarization, the UVA target assembly will be rotated by 90◦ around ver-
tical axis. For this configuration the rendered angular acceptance is ±17◦ horizontally, and ±21.6◦

vertically. The exit beam pipe excludes from angular acceptance a conical region with opening
angle of 6◦.

The proposed positioning of detectors opimizes coverage of the remaining angular acceptace
in a feasably simple way (Fig.14). The detectors are positioned above and below the exit pipe and
span from 6◦ to 21.6◦ vertically, and ±17◦ horizontally. Small adjustments in this coverage due to
deflections of the particles in the target magnetic field and background distributions are described
below, in Sections 3.4 and 3.5. Positioning at 150 cm from target ensures reasonable transverse
sizes of detectors.

The proposed detector package in its minimal configuration consists of hodoscopes for detec-
tion of proton, and electromagnetic calorimeters for detection of leptons. The hodoscopes have X
and Y planes and measure both transverse coordinates.

The final state of the reaction contains two leptons and a proton, which will provide a coinci-
dence trigger.

The exclusivity of the reaction is ensured by detecting all final-state particles, e+e−p and cut-
ting on the missing-particle kinematics.

The proposed design characteristics of the detectors are presented in Table 2.
The following sub-sections contain more detailed description of the parts of setup, and studies

on background conditions and trigger choices.

3.2 High Intensity photon beam

The proposed experiment will utilize untagged photon beam from Hermetic Compact Photon
Source (CPS) proposed by G. Niculescu B. Wojtsekhowski [32]. The bremsstrahlung photons are
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Parameters Calorimeters Hodoscope
range in φ ±17o ±17o

range in θ 6o - 21.6o 6o - 21.6o

-6o - −21.6o −6o - −21.6o

δφ < 5 mr < 1◦

δθ < 5 mr < 1◦

Energy resolution ∼ 2%/
√
E ∼ 10%

Time resolution < 100 ps < 100 ps
PID:

e/π ∼0.01 ...
π/p .... ∼0.1

Table 2: Proposed characteristics of the TCS detector setup. φ denotes angle in horizontal plane,
and θ denotes angle in vertical plane.

produced from CEBAF electron beam (maximum energy 11 GeV) impinging on 10% Cu radia-
tor. The electrons after target bend in 1 m long, 2.2 T field magnet, while photons pass straight
through narrow, 2mm in diameter collimator before reaching target. As bent electrons are dumped
in specifically designed for that purpose body of magnet, the whole setup is heavily shielded by
W -alloy in order to eliminate produced radiation.

The spot size of photon beam at 2 m away from the radiator is estimated to be ∼0.9 mm. The
projected photon flux is 1.5× 1012 s−1 for primary electron beam current 2.5 µA, for photon ener-
gies > 0.5 Ebeam [33].

19



Figure 14: Side view of the TCS experimental setup. Shown are photon beam (γ), transversely polarized
target (Tg) in the scattering chamber (OVC), and pairs of hodoscope (H) and calorimeter (C) counters for
detection of the recoil proton and the lepton pair.

Figure 15: The conceptual design of Hermetic Compact Photon Source.
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3.3 Polarized Target

Hall C has a long and successful experience with the use of solid polarized targets, starting in 1998
with the first run of E93-026[24] designed to measure the electric form factor of the neutron. This
was followed by its second run in 2001 and immediately by the Resonance Spin Structure exper-
iment, E01-006[25] in 2002 and by the Spin Asymmetries Experiment on the Nucleon (SANE)[26]
in 2009.

These targets exploit a technique called Dynamic Nuclear Polarization (DNP) in which polar-
ization is transferred from unpaired electrons in a dilute concentration of paramagnetic centers
(introduced via irradiation at 80K or by chemical doping). At 5 T and 1K the thermal equilibrium
of both species (proton and electron) is determined solely by Boltzmann statistics and can be writ-
ten as P = tanh µB

kT . The TE polarization of the electron under these conditions is 99.8% while the
proton is 0.51%, the difference due solely to the size of their respective magnetic moments. The
dipole-dipole interaction between the nucleus and the electron spins leads to hyperfine splitting.
By applying a RF field with a frequency very close to the electron spin resonance frequency (about
140 GHz at 5.0 Tesla), the high electron polarization (due to the large electron magnetic moment)
can be transferred to the proton.

Figure 16: Transitions driven by GHz microwaves in the DNP process

In the case of the proton, the direct polarization enhancement is achieved by driving the tran-
sition from the ground state of e 1

2
p 1

2
to the state e 1

2
p 1

2
by applying microwaves with frequency

around 139.914 GHz. See Figure 16.

The schematic view of the polarized target and the lower part of the target insert are shown in
Fig. 17.

The target magnet is a pair of superconducting Helmholtz coils that when driven at 77 A pro-
duce a magnetic field of 5 Tesla. The coils have a 20 cm central bore, 100o opening angle and 8 cm
of coil split. The field is uniform to 10−4 over 3 cm diameter right cylinder.

To provide transverse polarization of the target needed in this measurement, the target as-
sembly will be rotated by 90◦ around vertical axis. Restricted by the magnet coils and scattering
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Figure 17: The UVA polarized target used in Hall C experiments. Left:Cross section view of the target.
Right: A schematic drawing of the lower part of the target insert. The dashed line represents the tail piece
which contained liquid helium during data taking.

chamber window, the angular acceptance in this configuration will span ±17◦ horizontally and
±21.7◦ vertically 1.

The target magnetic field direction has been found to be coincident with the geometric axis of
the coils and is known to 0.1◦[27]. The target is cooled by a 4He evaporation refrigerator placed
vertically in the center bore of the magnet. It is contained in a separate vacuum shield (see Fig. 17).
The target material is held in cups at the the end of the target insert which can carry up to 5 targets:
a top and bottom NH3, an empty target and 2 solid targets (C or Be).

The microwaves are generated by an Extended Interaction Oscillator tube (Manufactured by
CPI, Canada) which has a maximum power of ∼20 W with approximately 1 W delivered to the
target sample. 15NH3 is chosen as the target material because of its high polarizability, large po-
larizable nucleon content and resistance to radiation damage.

The target polarization is measured via NMR using the Liverpool Q-meter in which the magni-
tude of polarization is linearly related with the voltage of the phase sensitive detector: P = K · S,
and K is a calibration constant. The calibration constant K is determined at thermal equilibrium. A
series of NMR signal area measurements are made and averaged to obtain the calibration constant.
They are typically done with each load of target material and as many time as is possible during
the run, especially after anneals.

The target material consists of 1-3 mm diameter granules of NH3, immersed a 4He bath inside
the target cavity. The packing fraction is the fraction of target cell volume filled by target material
(NH3), the rest of the cell being filled with liquid 4He. The packing fraction is important for the

1A version of the target used in JLab Hall A g2p experiment E08-027.
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simulation of the scattering cross sections and for the determination of the dilution factor.

The dilution factor, f , is defined as the fraction of events originating from polarized hydrogen.

Interaction of beam with taget material causes a decay of polarization due to radiation damage
caused by the build up of ’bad’ paramagnetic centers. which allow more relaxation paths through
the forbidden transitions. The decay of polarization continue until the measurement time for a
given accuracy becomes unacceptable.

In practice, for experiments using 100 nA electron beam this can occur in about 8 hours. For ex-
periments with photon beam like this one, the damage is less intence and the time is much longer.
Fortunately, the process of annealing recombine the paramagnetic centers and restore polarization.
To anneal the target material is moved out of the beam and the polarizing microwave radiation and
is heated to between 70-100 K for between 10 and 60 minutes.

The detailed information about polarized target subsystems, technique of operation and exper-
imental measurements can be found in Ref. [28, 29] and the UVa target group web server Ref.[30].
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Figure 18: 2.05× 2.05× 18cm3 PbWO4 crystals used in the high resolution part (HYCAL) of Hall B PrimEx
experiment calorimeter [22].

3.4 Lepton detectors

The determination of the kinematic variables Q′2, ξ and τ depends on the accuracy of reconstruc-
tion of the lepton energy and angle. Leptons (e+ and e−) in the experiment will be detected and
identified by measuring their energies, and coordinates (X and Y ) in a pair of electro-magnetic
calorimeters.

The calorimeters are thought to be clone of the shower counter for the projected Neutral Parti-
cle Spectrometer. The basic concept for the NPS is a highly segmented electro-magnetic calorimeter
preceded by a compact sweeping magnet. Experiments with NPS require detection of neutral par-
ticles with energies ranging between 0.5-7.6 GeV with good energy resolution (∼ 2%), and good
coordinate and angular resolution of 0.5-0.75 mrad, the latter is comparable to the resolutions of
the focusing spectrometers in Hall C.

An assembly from lead tungstate crystals, similar to HYCAL calorimeter in the PRIMEX and
PRIMEX-II experiments in Hall B [22] is recognized as a good match for the NPS calorimeter (see
Fig 18). Preparation work for construction of the NPS calorimeter is well underway. Tests are being
curried out at CUA and JLab to characterize optical and radiation-resistive properties of PbWO4

crystals from SICCAS and other sources, a small prototype detector of 3 × 3 crystal assembly is
construced for insitu studies.

The new active divider design of the PMT bases provides a linear response up to high rates of
∼1 MHz. More information about the NPS and design studies can be found in reference [23].

The calibration procedures developed in Primex experiment can be adapted to this project. Ex-
perience with the HYCAL yielded energy and coordinate resolutions of σ/E = 1.3% and σx ∼1.28-
2.10 mm at a neutral-pion energy of 5 GeV, giving an invariant mass distribution with a width of
2.3 MeV/c2 (see Fig, 19). For comparison, an energy resolution of 2.2% for incident electrons of∼4
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Figure 19: Energy and coordinate resolutions of PbWO4 crystals based HYCAL calorimeter.

GeV energy has been obtained in beam tests with the prototype in Hall D at JLab.

The transverse size of the TCS lepton detectors is driven by required angular acceptance and
distance to the target. Restricted by the target setup angular acceptance is±17◦ in horizontal plane
and ±21.7◦ in vertical plane (see Section 3.3). In addition, the beam pipe restricts scattering angles
to greater than 6◦. Taken into account vertical deflections of the particles to be detected in the side-
ways magnetic field of the target, we consider positioning the lepton detectors above and below
the beam pipe, at 0◦ of azimuthal angle.

Reasonable sizes for the detectors are obtained by positioning them at a distance ∼1.5 m from
the target. This implies 92× 41.5 cm2 of active area, for the angular acceptances ±17◦ horizontally
and±15.7◦ vertically. For PbWO crystals of 2.05×2.05 cm2 cross section for construction, the num-
ber of modules would be ∼1000 for each detector (taken into account addition of a layer around
the perimeter of cross-sectional area to exclude shower leaks). This number was refined after sim-
ulated acceptance studies, according to which a 50 × 23 matrix arrangement would be optimal,
with 1150 blocks per detector. A further refinement took place due to background simulations,
according to which the central region of detectors covering ±1.6◦ horizontally must be excluded
from consideration, because of unaceptably high background rates (see Section 3.6 below).

Hence the final layout of the calorimeters consists of 4 quarters (top left, top right, bottom left,
bottom right), 23 × 23 matrix of blocks each, mirroring each other horizontally and vertically. The
horizontal gap between left and right quarters is 8.2 cm wide, the vertical gap is 15.8 cm wide. The
number of required lead tungstate crystals totals to 2,116.

3.5 Detection of recoil protons

Determination of momentum transfer -t and its resolution depends on accuracy of reconstruction
of the recoil proton four momentum. Design requirements for the proton detectors are defined
by kinematics, required accuracy, available space and cost, as well as by the expected background
conditions. The recoil detectors will be located just before the lepton detectors and will cover a
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Figure 20: Proton PID by dE/dx in the Recoil Proton Detector. The graph shows ionization energy losses
versus momentum for pions, kaons and protons.

slightly larger angular area than allowed by the polarized target. Similar to the calorimeters’ case
(see Section 3.4), the horizontal band from -6◦ to 6◦ and vertical band ±1.6◦ at the middle of the
acceptance will be excluded, and the detector will be divided in 4 separate partitions.

The proposed 4 proton detectors have hodoscopic construction. Each hodoscope consists of X
and Y planes, and cover rectangular area of 50 × 48 cm2. The counters will be made of scintillator
bars. The width and thickness of the bars will be optimized for accuracy of the track coordinates’
determination, and for particle identification capabilities of the detectors.

The detected proton momenta will be within 0.3 − 1.2 GeV/c range, with bulk of statistics be-
tween 0.4 and 0.8 GeV/c. Proton identification will be based on dE/dx signal from the hodoscopes.
Thickness of at least few cm will be needed for reliable separation of protons and lighter particles
at momenta ∼1 GeV/c (Fig. 20).

3.6 Background and trigger studies

For experiments with open geometry setups backgrond conditions are of special importance. This
experiment will utilize bremsstrahlung photon beam of intensity, potentially as high as 2 × 1013

photons per second on target of 3.8% radiation length. Simple PDG based estimates for e+e− γ-
conversion production alone yields 3%/γ probability, i.e. rates in ∼ 1011Hz range, even a small
portion of which in the acceptance may cause difficulties.

A Geant4 based simulation code was developed to study background conditions, and detector
acceptances as well. The code models target assembly (scattering chamber with its windows and
shieldings, target cell and target material, magnet coils, magnetic field) and detector package. The
background events in the detectors were generated by passing bremstrahlung photons through the
target assembly. The photon energy was sampled from bremsstrahlung spectrum with tip energy
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of 11 GeV.

A custom made, fast c++/Root code for acceptance studies was also helpful in this case. The
code feutures point target, target magnetic field, target chamber and detector acceptances.

It was found that among background tracks within the detector acceptances 48% are γ-s, 24%
are positrons and 28% are electrons. The hadron content is small. Energy deposition from back-
ground events in the calorimeters reaches 4 GeV (Fig.21). There is low energy background, with
energies less than 100 MeV or so, which can be eliminated by posing cut of a few hundered MeV
on the hit energies.

The transverse magnetic field from target deflects charged background toward detectors. The
middle of acceptance, where backgeound rates are nontractable, is particularly affected (Fig. 22).
Excluding horizontal angle range ±1.6◦ in the acceptace and making corresponding modifications
in the detector setup (see Sections 3.4 and 3.5 sizeably reduces that region.

For construction of a viable low level trigger, identification of the ranges of useful events is
necessary. For loose cuts on the TCS kinematic variables of interest 9 GeV 2 > Q2 > 4 GeV 2,
−t < 1 GeV 2, s > 4 GeV 2, −t/Q2 < 0.3, momenta of leptons from detected BH events are greater
than 1 GeV , and sum of them is greater than 5 GeV . By establishing those thresholds on the de-
posited energies in the calorimeter, one can reduce rates of e+e− background coincident events by
3 orders of magnitude, but still leave them in 105 Hz range (Fig. 24).

A more sofisticated trigger can be constructed based on that the sum of transverse momenta of
the 3 detected particles are equal to 0. One can look for combinations of the measured quantities
that are proportional to the transverse momenta, are easy to implement in the trigger, and construct
the sum. For instance, the X component of the lepton transverse momentum can be represented by
X coordinate of the hit cluster in the calorimeter, weighted by the energy of the cluster E. Then,
assuming one lepton hit the top calorimeters, another the bottom calorimeters, one can look for a
pair of hit clusters with significant energy depositions, calculate the energy weighted coordinates
for them, and take the sum of the two quantities as a represenation of the transverse momentum

Figure 21: Background energy deposition in the calorimeters.
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Figure 22: Left: background rates in the paddles of X hodoscope. The scintillator paddles are 1 cm thick,
4 cm wide. Hits with deposited energies greater than 1 MeV are counted. Right: background rates in the
modules of top calorimeter. Hits with deposited energies greater than 200 MeV are counted.

of the decayed outgoing photon:

PX(γ?) ∼ X+E+ +X−E− (12)

The same procedure can be applyed to the Y coordinate, but with taking into accout a caveat:
contrary to the previous case, the leptons bend in axis direction. This results in a constant term in
the expression for the sum:

PY (γ?) ∼ Y+E+ + Y−E− + const (13)

Such constructed quantities for the triple coincidence BH/TCS events are constained within
ranges of ±50 GeV ·cm (X componemt), and from −100 GeV ·cm to 50 GeV ·cm (Y componemt)
(Fig.25). The dips in distributions correspond to gaps between parts of the calorimeters’ assembly.
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Figure 23: Lepton momenta of Bethe-Heitler events within acceptance of the TCS setup. Left: Sum of the
momenta. Right: electron momentum versus positron momentum. The dashed lines indicate threshols on
the electron and positron momenta greater than 1 GeV, and sum of the two greater than 5 GeV.

Figure 24: Bacground coincidence events in the calorimeters. Left: energy deposition in the top calorimeter
versus energy deposition in the bottom calorimeter. Right: same for events surviving threshod cuts on the
deposited energies.
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Figure 25: Weighted by deposited energy coordinates of hit clusters from leptons hitting the calorimeters,
for BH/TCS events detected in the setup. Left: sum of the weighted X coordinates from top and bottom
calorimeters. Right: same for the Y axis. See text for details.
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4 Simulation studies from generated events

4.1 Event generator for the beam and target polarized TCS+BH reaction

We developed an event generator based on the formalism presented in 2.1. The generator webpage
is hosted in [34], with a public version available. We generated events initiated from a real photon,
which energy distribution is rescalled following a bremstrahlung spectra. At the generation level,
we assume 100% polarization of the initial electron and 100% polarization of the target, which can
be rescaled by dilution factors at the analysis level. We set the polarization of the target being along
the x-axis, and we rotate randomly the reaction plane for taking into account the φS dependence
of the reaction. The events are generated in the following kinematic range:

• 7.5 < Eγ<10.5 GeV,

• 4 < Q’2 < 9 GeV2,

• .04 < -t < 0.8 GeV2,

• 40◦ < θ < 140◦,

• 0◦ < φ < 360◦,

• 0◦ < φS < 360◦.

Fig. 26 shows the correlations between t, Q’2 and ξ for all generated events.
These simulations are used for all projection studies in the following. Events are weighted ac-

cording to the unpolarized and polarized TCS+BH, BH "only" and TCS "only" cross sections for
the purpose of systematic studies. Unpolarized, beam or target polarized TCS+BH cross sections
are used for the projection of experimental uncertainties.

Some studies in the above section are done with the genTCS [31] event generator, which use
bremsstrahlung photons from 11 GeV primary electron beam within energy range 5.5 – 11 GeV ,
and point-like target, with invariant masses of the lepton pairs in the resonance-free region be-
tween 2 and 3 GeV.

4.2 Peaks in BH angular distributions and interpretations of the φ and θ dependence
of the cross sections

Angular dependence of the lepton pair production can be understood with the BH propagators of
eq.6. In the lab frame or in the γN CM frame, if one of the leptons are emitted along the beam
direction, one of the terms becomes very large. It is then proportional to ≈ 1

me
(me is the lepton

mass). At these limits, one of the two BH diagrams is largely dominant compared to the other
one. One of the leptons takes most of the energy of the virtual photon and is emitted at very low
angle (∼ 0◦), while the other one is emitted at large angle (∼ 180◦) with a very low momentum.
The cross section drastically increases next to these limits and sharp peaks are observed in angular
distributions. Azimuthal distributions (φCM ) are also strongly affected by this effect: one lepton
going to the beam direction is forcing all particles to be emitted in the same plane (see Fig. 4).

We expressed the cross sections as a function of the virtual photon CM frame electron angles
φCM and θCM (eq. 2). The angle φCM is conserved in the boost from γN CM frame, θCM (boost
axis, electron polar angle) is correlated to θlab for a given Θγγ∗ angle (angle between incoming and
outgoing photon). At small Θγγ∗ (tmin limit), we have the following effect:
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Figure 26: Top left: -t as a function of ξ, top right: Q’2 as a function of ξ, bottom left: Q’2 as a func-
tion of -t. The beam energy has been limited to 8.5 < Eγ<10.5 GeV. The weights are proportionnal
to the unpolarized cross section.
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• θCM → 0, i.e. e− is emitted along the beam direction, the diagram on right panel on Fig.
?? largely dominates. A sharp peak will be observed in the cross section at θCM → 0◦ and
φCM = 180◦.

• θCM → 180◦, i.e. e+ is emitted along the beam direction, the diagram on left panel on Fig.
?? largely dominates. A sharp peak will be observed in the cross section at θCM → 180◦ and
φCM = 0◦.

At Θγγ∗ larger than zero, the position of the peaks in θCM distribution depends on the kine-
matics (Eγ , t, Q’2). The correlation between Θγγ∗ and t and Q′2 at fixed Eγ is displayed on Fig.
27.
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Figure 27: Distribution in -t versus θγγ∗ (left panel, at Q’2=5 GeV2) and BH cross section as a
function of θγγ∗ (right panel, at -t=0.3 GeV2 and Q’2=5 GeV2). Both curves are calculated at Eγ=9.5
GeV. for 0 < φCM < 360◦ and 45◦ < θCM < 135◦.

The effect of correlations between θ and φ at the JLab kinematics is illustrated on Fig. 28, pre-
senting distributions in φCM , where θCM has been integrated in asymmetric ranges over θCM (one
diagram dominates). At these kinematics, the BH peaks are at θCM ∼ 20◦ and θCM ∼ 160◦, ex-
plaining that the curve corresponding to 20◦ < φCM < 30◦ presents the largest cross section. In
the perspective of experimental measurements, integrating calculations over a symmetric range
around θCM = 90◦, away from BH peaks, presents the advantage of having the same contribution
from the two diagrams in the integrated cross section while enhancing the statistic in each bin for
displaying distributions in other variables in the data.

Indeed, the θCM distribution and position of BH peaks is correlated to the angle Θγγ∗ , which
depends on t, Q′2 and Eγ . For kinematics with −t → tmin, the peaks are observed at θCM → 0
and θCM → 180◦. For larger −t, and for different values of Q′2 and Eγ , the peaks are observed at
different values, approching 90◦ for the large -t limit. BH peaks are at θCM → 0 and θCM → 180◦

when approching tmin, and at values between these two extrems limits for larger values of −t. We
also observe that the sharp increase of the cross section next to the peaks is limited for larger value
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of −t. At tmin, the cross section can increase by several orders of magnitude within a few degrees
in θCM or φCM range.
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Figure 28: BH cross section as a function of φ at Q′2 = 5 GeV2, -t=0.3 GeV2, Eγ=9.5 GeV, and
integrated over θCM on various ranges (colored curves).

4.3 Impact on the analysis and solutions

While BH cross sections can be calculated for any kinematic or angular fixed values, a discretized
problem with limited bin width will be affected by the very fast increase of the cross section next to
the peaks in the angular distributions. While a sufficient amounts of simulations can be generated
in order to achieve a reasonable precision for predicted cross sections from Monte-Carlo. However,
experimental data are limited in statistics, and the exact kinematics of the events are known only
up to the resolution precision. Experimental data are naturally "integrating" the cross section over
a certain bin width, which cannot be thinner than the resolution in different variables. To fit these
data, we need to integrate cross sections over the width of the bins they are presented into. As
a consequence, it is not possible to achieve comparison with reasonable systematic uncertainties
between experimental data having limited statistics and calculations when the cross sections are
variating very fast over a single bin. Therefore, for fitting data with BH calculations, we have to
stay away from BH peaks in the (θCM , φCM ) distribution, where cross sections are typically in-
creasing by more than two orders of magnitude within a single bin.

To reproduce experimental conditions (limited statistics, broad kinematic range) and get the
position of the BH peaks, we computed BH cross sections as a function of θCM at fixed values
of Eγ , t and Q’2. We integrated the cross sections over φCM with a limited number of steps. We
perfomed calculations for two values of θCM symmetric around θCM = 90◦ with 5◦ steps in θCM :
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85◦ and 95◦, 80◦ and 100◦... The results are expected to be the same for the two symmetric values
of θCM . We set as a condition to position the peaks and determine the region where we cannot fit
data with reasonable errors, the observation of results being different by more than 5% (due to our
binning and the fast variations). It defines the values of θmin and θmax, respectively the starts of
the two steep slopes in θCM distribution. We reproduced the same exercise for different values of
Eγ , t and Q’2. Values of θmax for Eγ = 9.5 GeV, as a function of −t and Q′2 are displayed on Fig.
29.
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Figure 29: Values of θmax for a fix beam energyEγ = 9.5 GeV, as a function of t for different values
of Q′2 (top panel) and as a function of Q′2 for different values of −t (bottom panel).

We reproduced the same exercise by integrating cross sections over different ranges in φCM
(0±10◦, 0± 20◦, 180◦± 30◦...). We conclude that the peaks can be avoided by 2-dimensional cuts in
φCM and θCM , which we appy in our projections, such as:

• if (θCM<θmin and 150◦ < φCM < 210◦), the event has to be rejected,

• if (θCM>θmax and −30◦ < φCM < +30◦, the event has to be rejected,

• otherwise the event can be kept and results can be fitted with reasonnable systematic errors.

4.4 Correlation between the electron and the positron kinematics in the lab frame at
vertex

We display in Fig. 30 the asymmetries between angles (θlab, φlab) and momentum (Plab) of the
electron and the positron in the lab frame. Equivalent 2D distributions are shown Fig. ??. We
defined these asymmetries, for θlab (and similarly for the other variables) as

∆θlab
< θlab >

=
θlab(e

−)− θlab(e+)

θlab(e−) + θlab(e+)
. (14)

The ∆θlab
<θlab>

and ∆Plab
<Plab>

distributions are reflecting the interpretations of section 4.2: if one lepton
takes more energy, it is scattered at lower angle with larger momentum while the other one is scat-
tered at large angle with lower momentum. Therefore, these distributions will present maximal
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asymmetries for larger cross sections. The ∆φlab
<φlab>

distribution peaks at φlab = ±0.5 are correlated
to these asymmetric decays.
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Figure 30: Asymmetries in lab frame between the scattered electron and positron. Top left: ∆φlab
<φlab>

,
top right: ∆θlab

<θlab>
, bottom left: ∆Plab

<Plab>
.

We display on Fig. 33 θ ("physics" polar angle) versus θlab (in lab frame, at vertex) distribution
of generated events for the scattered electron. The distributions are averaged over all kinematic
variables but θCM . The weights are proportional to the cross section: the higher cross sections
(color = yellow) observed in the lowest bin in θlab correspond to the BH peak for the electron
scattered along the beam direction. The higher cross sections for larger θlab are a consequence
of the correlation with the other BH peak: if the positron takes most of the available energy, the
electron is scattered with lower momentum at larger lab angle (θlab → 180◦).

4.5 Final particle distribution and physics impact as a function of the kinematics

As a consequence of the BH cross section behavior, it is not possible to conclude for the best posi-
tion of the calorimeters and the recoil detector from the expected counting rates. Indeed, the cross
section can be very large for some specific angles and momentum of the final particles, but the
asymmetry and the TCS/BH rate may be small. We studied the angular and momentum depen-
dence of the unpolarized cross section, the TCS/BH rate and the size of the asymmetries Figs. ??
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Figure 32: Distribution of θCM versus θlab for the scattered electron. Monte-Carlo data.
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and ?? compares the 2D distributions of the electron and the proton momentum versus their polar
angle (without deflection), weighed by factors proportionnal to the unpolarized cross section, the
TCS/BH rate and the size of the transverse spin asymmetries. We concluded that the position of
the detector in the proposed setup allows for a fair balance between counting rates, the size of the
asymmetries and impact of the physics (shown by fitting the CFFs).

  

weights cross section∝  weights TCS/BH rate∝ weights  A∝
UT

Figure 33: Distribution of momentum versus θlab for the scattered electron (top row) and the
recoil proton (bottom row), weighted by factors proportionnal to the unpolarized cross section (left
column), the TCS/BH rate (central column) and the size of the transverse target spin asymmetry
(right column).
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5 Experimental projections

In this section we describe kinematics, acceptances, analysis methods and projected uncertainties
of the proposed experiment. We propose to study photoproduction of lepton pairs, γp → l+l−p′,
in a wide range of kinematics. The analysis will use the photoproduction reaction:

γp→ e+e−p′ (15)

where the incoming photon (γ) is real and the final photon has a high timelike virtuality and
decays into a lepton pair. In Eq. (15), e+e− is the produced lepton pair, and p′ is the recoil proton.
The final state contains two leptons and a proton, which will provide a coincidence trigger. To
suppress background from two-pion photoproduction, the trigger has to contain the two leptons
energy cut, at least on the level of 300 MeV. The exclusivity of the reaction is ensured by detecting
all final-state particles, e+e−p and cutting on the missing-particle kinematics.

This experiment will use 11 GeV energy electron beam incident on 10% radiator to produce
high intensity real photons (see Section 3.2). Highly colimated photons will interact with trans-
versely polarized protons (solid ammonia NH3) yielding luminosities up to L = 1035 cm−2 sec−1.
The detectors will allow for detecting the lepton pair and recoil proton in coincidence. A pair
of electromagnetic NPS-type calorimeters will be used for detection of leptons, determination of
their energies, and for e/π separation. A pair of recoil detectors will be used to detect protons.
These detectors will be combined Hall C basic electronics and DAQ. The experimental setup is
shown in Fig. 14. We assume that the NPS-type calorimeters and recoil hodoscope systems will
be positioned at angles of from 6◦ to 21.7◦ and from -6◦ to -21.7◦ up and down relative to beam-
line, covering ±17◦ in horizontal plane. The proposed design characteristics of the detectors are
presented in Table 2.

5.1 Acceptance

The generated lepton and proton tracks were traced through the magnetic field of the target, then
scattering chamber window up to the detectors at 1.5 m distance from target. As target field is
oriented sideways relative to the beam direction, the tracks are deflected up and down. The track
bending happens close to the target, for the field being localized within ∼15 cm space at target.
The fringe fields do not affect significantly tracks. The high momentum electrons deflect by only
∼ 2◦. While for protons, with momenta from 0.3 to 1.5 GeV/c the bending angle is ∼ 15◦ − 20◦,
typically, and may reach 75◦.

The angular acceptance is limited by the magnet poles and the closely matching to them cham-
ber window: ±17◦ horizontally and±21.7◦ vertically. The beam pipe downstream the target cham-
ber poses small angle limit of ±6◦. Hence positions and sizes of the lepton and proton detectors,
and the tracker as well are chosen to match outgoing track directions (see Sections 3.1, 3.5, 3.4).
We display Fig. 34 the t-distribution of accepted events applying a tagging of the two leptons only
(blue curve), and applying in addition a tagging of the proton (red curve). The ratio of the curves
(bottom panel) corresponds to the impact on the acceptance of the proton tagging.

5.2 Counting rates and projection of the observables

We applied the following phase space and analysis cuts:

• 7.5 < Eγ < 11 GeV (from correlations, we obtain .1 < ξ < .45),
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Figure 34: The t-distribution of lepton tagged events (top panel, blue curve) and lepton+proton
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-t=0.2 GeV2 is applied for the purpose of these figures.

• 4 < Q’2 < 9 GeV2,

• 0.04 < -t < 1.04,

• 40◦ < θ < 140θ in addition to the cut θmin,max as explicited in section ??,

• 0◦ < φ < 360◦,

• 0◦ < φS < 360◦,

• 6◦<θlab(e±)<120◦,

• p(p) > 0.1 GeV, p( e+ or e−) > 0.2 GeV,

• tagging of the 2 leptons and the proton.

We defined bins in t, ξ and Q′2 as presented Fig. 35 for the unpolarized and beam polarized cross
sections. For each of these bins, we use 16 bins in φ, with additional 16 bin in φS for transversely
target polarized dependent cross sections. We integrated over θ. We display Fig. 36 a projection
of the counting rates for the unpolarized cross section, after applying all cuts and acceptance.
We display Fig. 37 the beam spin asymmetries with the expected statistic uncertainties. Fig. 38
presents the AUx and AUy asymmetries using the same binning (uncertainties are not displayed
because the figure will be rebinned). For the selected bin 0.17 < -t < 0.25 GeV2 and 0.13 < ξ <
0.16, we display the transverse target spin asymmetries as a function of φ in φS bins. Each set
of 2 orthogonal transverse spin asymmetry (first row versus second row) provides independent
information and will be fitted simultenaously to extract the CFFs.

40



1

I    II III

IV

4 bins in ξ, Q'² (GeV²) 5 bins in -t (GeV²)

I)   .1 <ξ<.13,  4<Q'²<4.5   1) .04<-t<.1, 2) .1<-t<.17, 3) .17<-t<.25, 4) .25<t<.4 5) .4<-t<.7
II)  .13<ξ<.16, 4<Q'²<5.5   1) .04<-t<.1, 2) .1<-t<.17, 3) .17<-t<.25, 4) .25<t<.4   5) .4<-t<.7
III) .16<ξ<.22, 4<Q'²<7    3) .17<-t<.25  4) .25<t<.4   5) .4<-t<.7
IV) .22<ξ<.3,   4.5<Q'²<9     4) .25<t<.4   5) .4<-t<.7

Q'² vs ξ, 
weight  σ∝
no cuts

-t vs ξ, 
weight  σ∝
no cuts

Figure 35: Phase space binning for the TCS+BH analysis.
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Figure 36: Projection of number of events in each bin as a function of 16 bins in φ.
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Figure 37: Projection of the single circularly polarized beam spin asymmetries in each bin as a
function of 16 bins in φ.
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Figure 38: Projection of the single transversely polarized target spin asymmetries at fix φS , i.e.
AUx (blue) and AUy (red), in each bin as a function of 16 bins in φ.
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a function of 16 bins in φ.
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6 Conclusion

We propose to the measure TCS+BH transversely polarized target single spin asymmetries, the
circularly beam polarized spin asymmetry and the unpolarized cross section. This measurement
will held at the Jefferson Laboratory Hall C experimental facility, using a real photon source (Com-
pact Photon Source, CPS), electromagnetic calorimeters as for the Neutral Particle Spectrometer
(NPS), and using a transversely polarized target (NH3 UVa target). The main physics goals of this
experiment are:

• Demonstration of GPDs universality by comparing GPDs measured from a spacelike pro-
cess (DVCS) and a timelike process (TCS, this experiment). The expected level of precision
of the universality proof compared to other approved experiments [?, ?] is one order of mag-
nitude better on GPD H, which will allow for discrimination between scenarii of universal
or non universal GPDs, and address the milestone of demonstrating QCD structure function
universality.

• Extraction of the CFF =E of the proton at the same level as achievable from DVCS experi-
ments. This result will allow for constraining quark angular momenta and contribute to the
understanding of the nucleon’s partonic spin structure.

• Complementarity with DVCS measurement and possibility of combined CFF extraction from
TCS and DVCS independently for comparisons, and simultenaoulsy, with new independent
information from TCS in order to constrain all protons quark CFF at the same time. It allow
for constraining both real and imaginary part of all CFFs simultenaously and bring strong
constrain to GPD models. Imaginary part of CFFs can be constrained at a percent level.

We will take advantage of the development of the approved NPS project []. The major hardware
development that are required are:

• A second electromagnetic calorimeter similar as the NPS one,

• A scintillator hodoscope based recoil proton detector.

We anticipate a need of 30 days of beam, with a photon luminosity of 1035 photons/cm2/s, which
represent 5.85e5 pb−1 integrated luminosity in total for 5.5 to 11 GeV real photons. in order to
achieve the presented experimental uncertainties.
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7 APPENDIX A: Details about CFF fitting method

7.1 Pseudo-data and methods

All the distributions we generated and used for extracting the CFFs are shown on Fig. 40 (DVCS+BH)
and 41 (TCS+BH). Rather than directly fitting the CFF, we extract coefficients of the generated CFFs
values from these observables. The coefficients are set to 1 when the generated value is recovered.
We limit the variation of all the coefficients during the minimization procedure to stay in a range of
[−5,+5], in order to force underconstrained fits to converge. The impact of limitating the variation
of the coefficients on uncertainties and on correlation between the extracted CFFs is discussed in
[17]. As shown on Fig. 42, the result of the fit (mean value) has a dependence on the starting point
and fluctuate around the generated value. However, the ±1σ limits of the result are stable. To
check if CFFs can be extracted from actual data, we also smear the generated cross section points
within 1σ of the uncertainties. Similarly, we started the fits from random values of the coefficients.
We obtained broader distributions of the results and their limits, with a resolution including the
uncertainties on the observables and the correlation between the different CFFs (Fig. 43).

We fitted the results of the fits (CFF value and 1σ errors) by gaus functions. When a given CFF
can be extracted from a specific set of observables, we found stable results and allocated the fitted
1σ limits as uncertainties on extracted CFFs. To avoid overcounting the uncertainties on CFFs and
in our goal of comparating DVCS and TCS, we used the unsmeared distributions of pseudo-data
for this exercise.
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Figure 40: Generated distributions for DVCS+BH process. First row: unpolarized cross section,
beam spin cross section difference, beam charge cross section difference. Second row: single target
spin cross section differences (target spin along x, y, z). Third row: double spin cross section
differences (target spin along x, y, z).
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Figure 41: Generated distributions for TCS+BH process. First row: unpolarized cross section,
circularly polarized beam spin cross section difference, longitudinaly polarized beam cross section
difference. Second row: target polarized cross section differences (target spin along x, y, z). Third
row: double beam and target polarized cross section difference (target spin along x, y, z).

49



0 20 40 60 80 100

fit
*H

tim
 g

en
.

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5 GraphGraph

Figure 42: Result for =H̃ of fitting 100 time the same distribution starting from a random value
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