Spin-Dependent e-³He Polarized DIS Measurements with EIC

Acknowledge discussions with T.W. Donnelly, W. Fischer, R. Jaffe, R. Wiringa

FIG. 5. Schematic layout of polarized ³He ion source under development by a BNL-MIT collaboration using optically pumped polarized ³He atoms directed into the existing Electron Beam Ionization Source.

Polarized ³He expected in RHIC in the early 2020s

Two 5 T Solenoids for Extended EBIS

Polarized ³He ions in RHIC anticipated in early 2020s

Arrived at BNL March 2018

Polarized ³He Ions in RHIC

$$L = \frac{N_p N_{He3} f_{rev} N_c}{2\pi \sqrt{\sigma_{p,x}^2 + \sigma_{He3,x}^2} \sqrt{\sigma_{p,y}^2 + \sigma_{He3,y}^2}}.$$

TABLE I. Comparison of e - p vs. e^{-3} He luminosity, maximum center-of-mass energies and minimum x in eRHIC with 20 GeV electrons.

Parameter	Unit	<i>e</i> -p	e^{-3} He
Luminosity	${\rm cm}^{-2} {\rm s}^{-1}$	2.5×10^{32}	1.3×10^{32}
Max. Ion Energy	${ m GeV}$	250	166
$\sqrt{s_{max}}$	${ m GeV}$	140	115
x_{min}		5×10^{-5}	7.6×10^{-5}

Neutron Spin Structure Function

$$g_1^n(x,Q^2)$$

Rest frame of the ³He nucleus

Neutron polarization: 87%

Proton polarization: 2.7%

- With successful realization of 70% polarized 3 He ion beam in EIC, precision measurement of $g_1^n(x,Q^2)$ should be a goal with a day-1 detector
- Aim should be to test Bjorken Sum Rule with unprecedented precision
- Will require technical development of Siberian Snakes and high energy ³He polarimeter in RHIC
- In spin-dependent DIS if one tagged the spectator proton and deuteron, could one access the spin structure functions of the deuteron and proton, respectively?

RHIC momenta

TABLE II. Magnetic rigidity of incident ³He and final-state spectator ²H and ¹H in DIS from polarized ³He at highest energy available in eRHIC with 20 GeV electrons.

Nucleus	Momentum	Charge	Magnetic Rigidity (p/q)
	${ m GeV/c}$	e	$\mathrm{GV/c}$
³ He	498	+2	249
$^{2}\mathrm{H}$	332	+1	332
$^{1}\mathrm{H}$	166	+1	166

$$|^{3}\text{He}\uparrow\rangle = (n\uparrow)[(p\uparrow p\downarrow) - (p\downarrow p\uparrow)]$$

$$= (n\uparrow p\uparrow)_{(J=1,M=1)}(p\downarrow) - (n\uparrow p\downarrow)_{(M=0)}(p\uparrow).$$

For the np system, we have J=1,0 with

$$|1,1> = (n\uparrow p\uparrow)$$

$$|1,0> = \frac{1}{\sqrt{2}}[(n\uparrow p\downarrow + n\downarrow p\uparrow]$$

$$|1,-1> = (n\downarrow p\downarrow)$$

$$|0,0> = \frac{1}{\sqrt{2}}[(n\uparrow p\downarrow - n\downarrow p\uparrow)] .$$

We can then write

$$(n \uparrow p \downarrow)_{(J=1,M=0)} = \frac{1}{\sqrt{2}} [|1,0>+|0,0>]$$
$$(n \downarrow p \uparrow)_{(J=0,M=0)} = \frac{1}{\sqrt{2}} [|1,0>-|0,0>] ,$$

which allows us to express the ${}^{3}\text{He} \uparrow \text{spin-state}$ as

$$|^{3}$$
He $\uparrow > = |1, 1 > (p \downarrow) - \frac{1}{\sqrt{2}}[|1, 0 > +|0, 0 >](p \uparrow).$

When normalized, this becomes

$$|^{3}$$
He $\uparrow > = \frac{1}{\sqrt{2}}|1, 1 > (p\downarrow) - \frac{1}{2}[|1, 0 > +|0, 0 >](p\uparrow)$.

Similarly, it follows that

$$|^{3}$$
He $\downarrow > = \frac{1}{\sqrt{2}}|1, -1 > (p \uparrow) - \frac{1}{2}[|1, 0 > -|0, 0 >](p \downarrow)$.

We can then write

$$(n \uparrow p \downarrow)_{(J=1,M=0)} = \frac{1}{\sqrt{2}} [|1,0>+|0,0>]$$
$$(n \downarrow p \uparrow)_{(J=0,M=0)} = \frac{1}{\sqrt{2}} [|1,0>-|0,0>] ,$$

which allows us to express the ${}^{3}\text{He} \uparrow \text{spin-state}$ as

$$|^{3}$$
He $\uparrow > = |1, 1 > (p \downarrow) - \frac{1}{\sqrt{2}}[|1, 0 > +|0, 0 >](p \uparrow).$

When normalized, this becomes

$$|^{3}$$
He $\uparrow > = \frac{1}{\sqrt{2}}|1, 1 > (p\downarrow) - \frac{1}{2}[|1, 0 > +|0, 0 >](p\uparrow)$.

Similarly, it follows that

$$|^{3}$$
He $\downarrow > = \frac{1}{\sqrt{2}}|1, -1 > (p \uparrow) - \frac{1}{2}[|1, 0 > -|0, 0 >](p \downarrow)$.

- Tagged deuteron: Scattering from the |0,0> state cannot contribute. Thus, measurement of ${}^{3}\overline{\text{He}}(\overrightarrow{e},e'd_{\text{spectator}})$ in DIS kinematics is equivalent to scattering from a negatively polarized proton 66% of the time and 33% of the time from a positively polarized proton. This is equivalent to scattering from the polarized proton in ${}^{3}\text{He}$ with -33% polarization. This makes polarized ${}^{3}\text{He}$ an effective polarized proton target.
- Tagged proton: 50% of the time, the scattering arises from the $|1, 1\rangle$ state, 25% from the $|1, 0\rangle$ state and 25% from the $|0, 0\rangle$ state. In forming the spin-asymmetry A in the DIS process $\overline{^{3}\text{He}}(\overrightarrow{e}, e'p_{\text{spectator}})$ there will be a contribution from scattering from the deuteron A_{ed} , the contribution arising from the $|1, 0\rangle$ state will cancel and there will a correction arising from a contribution A_{corr} from scattering from the np pair in the $|0, 0\rangle$ state, i.e.

$$A \sim \frac{2}{3}A_{ed} + \frac{1}{3}A_{corr} \ .$$
 (29)

How large is A_{corr} ?

R.B. Wiringa et al., Phys. Rev. C 89, 024305 (2014)

FIG. 8. Momentum distributions of nucleon-nucleon pairs by spin (S) and isospin (T) in 3 He in fm 3 calculated using variational Monte-Carlo techniques from [9].

Questions

- What is the probability of detecting a spectator deuteron or proton when the partner proton or deuteron, respectively, suffers a DIS scattering from a polarized high-energy electron?
- How large are the corrections in extracting $A_1^p(x,Q^2)$ and $A_1^d(x,Q^2)$ from electron scattering from polarized ³He? Is it even tractable?
- In spin-dependent scattering from the polarized ²H nucleus, can one extract $A_1^p(x,Q^2)$ and $A_1^n(x,Q^2)$ by tagging on the spectator neutron and proton?

FIG. 7. Spin-dependent DIS from the deuteron in ³He at maximum energy in RHIC by tagging the spectator proton. The deuteron is predominantly polarized in the direction of the ³He nuclear spin.

Tagged protons and deuterons

FIG. 9. Acceptance at the Roman Pot detector located 20 m from the IP for spectator protons in 5 GeV electrons incident on 100 GeV/nucleon ³He as determined in a simulation for eRHIC using DPMJET III by J.H. Lee (BNL) as reported in [12].

Summary

- Our perspective on spin-dependent DIS from few-body nuclei is all based on these targets being in their rest frame.
- Calculations of spin-dependent DIS in the EIC frame are needed.
- T.W. Donnelly: approach is to calculate spin-dependent interaction in nuclear rest-frame and boost to EIC frame.
- Donnelly and Sofiatti have done this for e-p elastic:
 Phys. Rev. C 84, 14606 (2011)
- Sizable effects on spin when boosting.
- If needed, boosted ³He spin structure in collider frame could be measured at RHIC once polarized ³He become available.

Richard Milner EICUG meeting