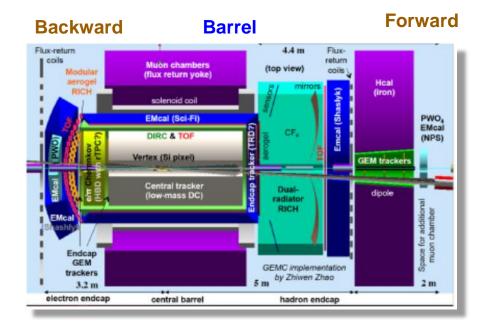
New Materials for Calorimetry at EIC

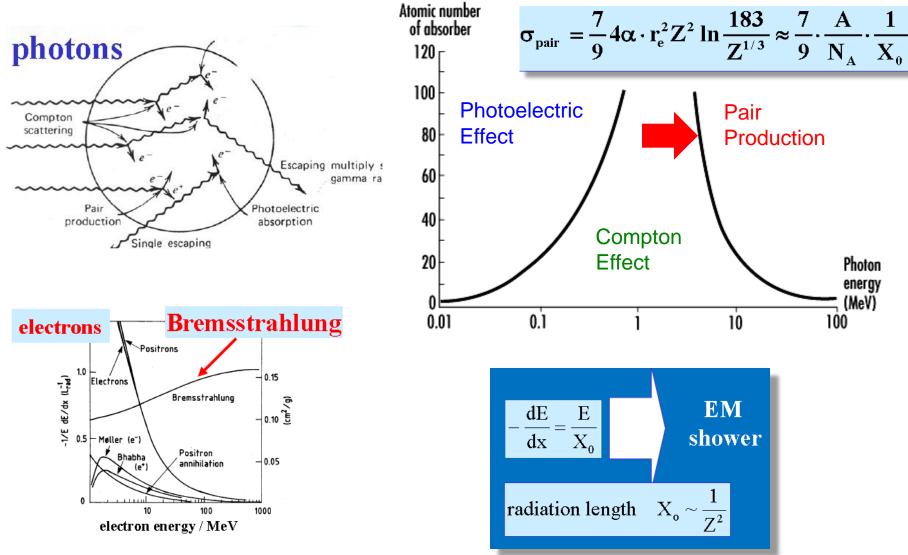
Tanja Horn / Ian Pegg

EIC Users Group Meeting 2018 (EICUGM2018)

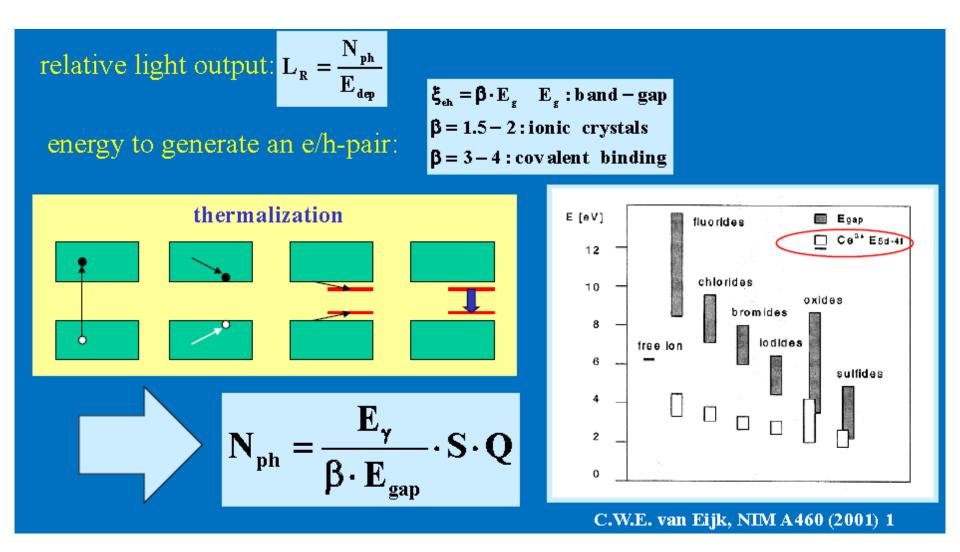

CUA, July 30 – August 2, 2018

EIC Calorimeter Consortium Goals

Develop calorimeters that meet the requirements of physics measurements at an EIC – including all regions of the detector

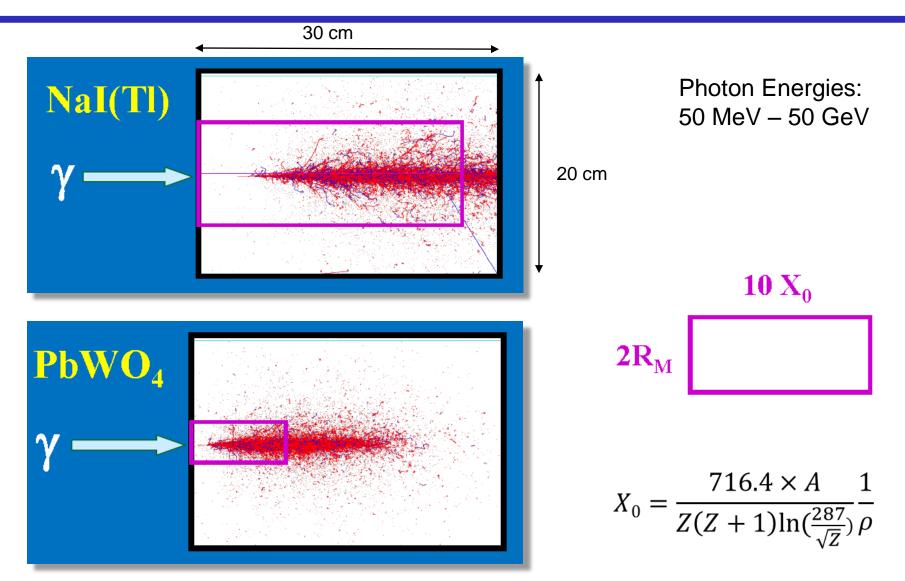

Systematic uncertainties are expected to be the main limiting factor in extracting the underlying physics

- Reduce systematic uncertainty on a broad range of physics measurements by employing different technologies
- Broaden the spectrum to include *new technologies* that could potentially offer *improved performance, lower cost, mitigate risk and broaden user involvement*



	La antizi Unit Ministrative Min
Regions and Physics Goals	Calorimeter Design
Lepton/backward: EM Cal ○ Resolution driven by need to determine (x, Q ²) kinematics from scattered electron measurement ○ Prefer 1.5%/√E + 0.5%	 Inner EM Cal for for η < -2: ➢ Good resolution in angle to order 1 degree to distinguish between clusters ➢ Energy resolution to order (1.0-1.5 %/√E+0.5%) for measurements of the cluster energy
 Ion/forward: EM Cal Resolution driven by deep exclusive measurement energy resolution with photon and neutral pion Need to separate single-photon from two-photon events Prefer 6-7%/√E and position resolution < 3 mm 	 Ability to withstand radiation down to at least 2-3 degree with respect to the beam line. Outer EM Cal for -2 < η < 1: Energy resolution to 7%/√E Compact readout without degrading energy resolution Readout segmentation depending on angle
 Barrel/mid: EM Cal Resolution driven by need to measure photons from SIDIS and DES in range 0.5-5 GeV To ensure reconstruction of neutral pion mass need: 8%/√E +1.5% (prefer 1%) 	 Barrel, EM calorimetry ➤ Compact design as space is limited ➤ Energy resolution of order 8%/√E +1.5%, and likely better
Ion/Forward: Hadron Cal ○ Driven by need for x-resolution in high-x measurements ○ Need Δx resolution better than 0.05 ○ For diffractive with ~50 GeV hadron energy, this means 40%/√E	 Hadron endcap: > Hadron energy resolution to order 40%/√E, > EM energy resolution to < (2%/√E + 1%) > Jet energy resolution < (50%/√E + 3%)

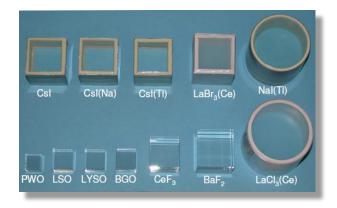
Electromagnetic Probes


Scintillator Basics – photons from scintillation

Requirements on calorimeter materials

- □ Light Yield Conversion of energy into visible light
- □ Attenuation Coefficient Radiation length
- □ Scintillation Response emission intensity
- Emission spectrum matching between scintillator and photo detector emission peak
- □ Chemical stability and radiation resistance
- □ Linearity of light response with incident photon energy
- □ Moliere radius for lateral shower containment
- □ Temperature stability

Scintillator Basics – stopping power

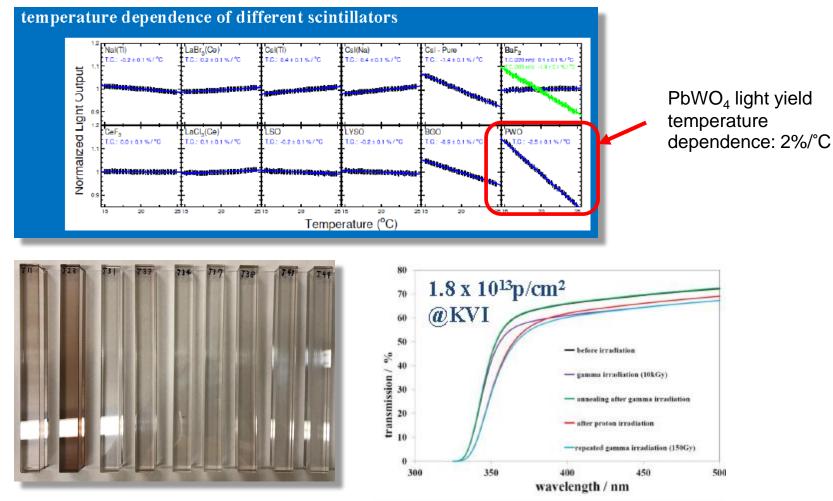


Small Moliere radius good to contain shower

Disadvantage: more sensitive to mismatches of tracking

Selection of Inorganic Scintillators

Material/ Parameter	Density (g/cm³)	Melt. Point (°C)	Rad. Length (cm)	Moliere Radius (cm)	Refr. Index	Emission peak	Decay time (ns)	Light Yield (γ/MeV)	Rad. Hard. (krad)	Radiation type	Z _{Eff}
BaF₂	4.89	1280	2.03 2.06	3.10 3.40	1.50	300 220	650 0.9	16000 2000	>50	Scint.	52.7
CeF ₃	6.16	1460	1.70 1.68	2.41 2.60	1.62 1.68	340 300	5 30	2800	>100	Scint.	50.8
(BGO)Bi ₄ Ge ₃ O ₁₂	7.13	1050	1.12	2.23 2.30	2.15	480	300	8000 4000	>1000	.98 scint, .02 Č	83
(PWO)PbWO ₄	8.30	1123	0.89 0.92	2.00	2.20	560 420	50 10	40 240	>1000	.90 scint. .10 Č	75.6
PbF ₂	7.77	824	0.93	2.21	1.82	280 310	<30	2-6	50	Pure Č	77
(BSO):CeBi ₄ Si ₃ O ₁	6.80	1030	1.85	≈5	2.06	470 505	≈100	1000 4000	>10	Scint.	75
(LSO):CeLu ₂ SiO ₅	7.40	2050	1.14	2.07	1.82	420	40	30000	>1000	.98 sint 02 Č	64.8
(LYSO):Ce[LuY] ₂ SiO ₅	7.40	2050	1.14	2.07	1.82	420	40	30000	>1000	.98 scint. .02 Č	64.8

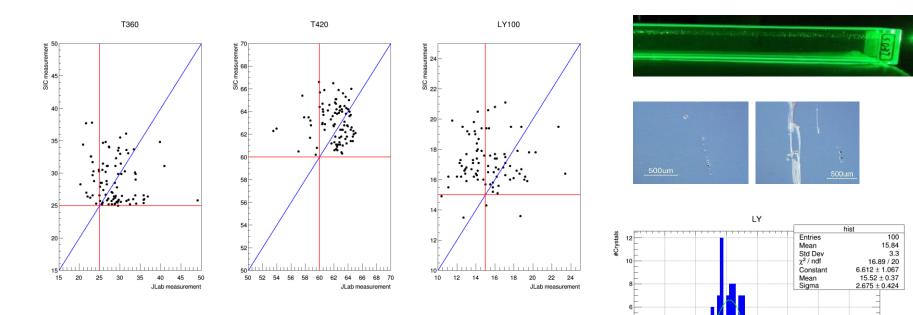

Identical Volume: X₀³

Regions and Physics Goals	Calorimeter Design
 Lepton/backward: EM Cal Resolution driven by need to determine (x, Q²) kinematics from scattered electron measurement Prefer 1.5%/√E + 0.5% 	 Inner EM Cal for for η < -2: Good resolution in angle to order 1 degree to distinguish between clusters Energy resolution to order (1.0-1.5 %/√E+0.5%) for measurements of the cluster energy
 Ion/forward: EM Cal Resolution driven by deep exclusive measurement energy resolution with photon and neutral pion Need to separate single-photon from two-photon events Prefer 6-7%/√E and position resolution < 3 mm 	Ability to withstand radiation down to at least 2-3 degree with respect to the beam line.

Backward/lepton Inner EM Cal – most demanding for high resolution

EIC EMCal Endcaps: PbWO₄

□ PbWO₄ material of choice for EIC EMCal – stopping power, fast response, large and granular solid angle, etc., but also limitations, e.g. hadron radiation damage



PbWO₄ radiation resistance

EIC EMCal Endcaps: PbWO₄

□ Another consideration: expensive (\$15-25/cm³) and manufacturing uncertainty

Despite progress (work with SICCAS and now also CRYTUR) still a struggle to work with vendors to get reliable PbWO₄ crystals that would be compatible with EIC requirements at small angles in the forward and backward regions

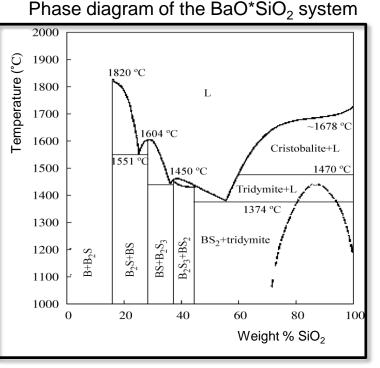
 ~40% of SICCAS 2017 crystals fail specs, considerable delay in CRYTUR mass production

Regions and Physics Goals	Calorimeter Design
 Lepton/backward: EM Cal Resolution driven by need to determine (x, Q²) kinematics from scattered electron measurement Prefer 1.5%/√E + 0.5% 	Outer EM Cal for $-2 < \eta < 1$: > Energy resolution to 7%/ \sqrt{E}
 Ion/forward: EM Cal Resolution driven by deep exclusive measurement energy resolution with photon and neutral pion Need to separate single-photon from two-photon events Prefer 6-7%/√E and position resolution < 3 mm 	 Compact readout without degrading energy resolution Readout segmentation depending on angle
 Barrel/mid: EM Cal Resolution driven by need to measure photons from SIDIS and DES in range 0.5-5 GeV To ensure reconstruction of neutral pion mass need: 8%/√E +1.5% (prefer 1%) 	 Barrel, EM calorimetry Compact design as space is limited Energy resolution of order 8%/√E +1.5%, and likely better
Backward/lepton Outer EM Cal and	barrel region – more relaxed on

resolution requirements

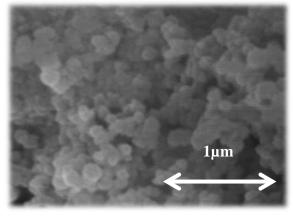
An alternative active calorimeter material that is more cost effective and easier to manufacture than, e.g. crystals

Material/ Parameter	Density (g/cm ³)	Rad. Length (cm)		Interact Length (cm)		Emission peak	Decay time (ns)	Light Yield (γ/MeV)	Rad. Hard. (krad)	Radiation type	Z _{Eff}
(PWO)PbWO ₄	8.30	0.89 0.92	2.00	20.7 18.0	2.20	560 420	50 10	40 240	>1000	.90 scint. .10 Č	75.6
(BaO*2SiO₂):Ce glass	3.7	3.6	2-3	~20		440, 460	22 72 450	>100	10 (no tests >10krad yet)	Scint.	51
(BaO*2SiO ₂):Ce glass loaded with Gd	4.7-5.4	2.2		~20		440, 460	50 86-120 330-400	>100	10 (no tests >10krad yet)	Scint.	58


Also: (BaO*2SiO₂):Ce shows no temperature dependence

Shortcomings of earlier work:

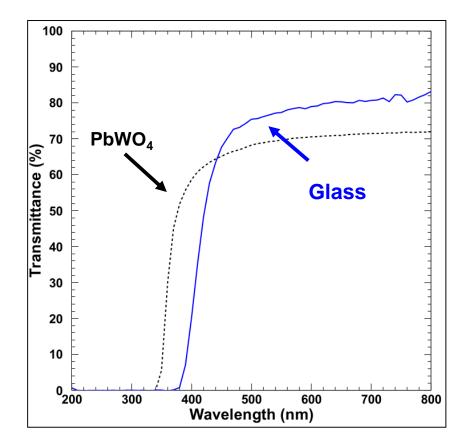
- Macro defects, which can become increasingly acute on scale-up
- Sensitivity to electromagnetic probes

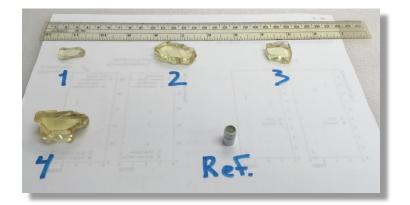

Material Overview

Technology: Glass production combined with successive thermal annealing (800 – 900°C)

Material	Density (g/cm ³)	X ₀ (cm)	Emission peak (nm)	Cutoff (nm)	Zeff
(BaO*2SiO ₂):Ce glass	3.7	3.6	440, 460	310	51
DSB:Ce	3.8	3.5	440, 460	310	51
(BaO*2SiO ₂):Ce glass loaded with Gd	4.7-5.4	2.2	440, 460	318	58

Study of New Glass and Glass Ceramics Scintillation Material (Novotny et al., 2016+)

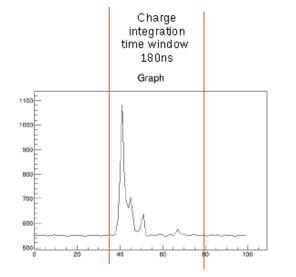

SEM image of recrystallized BaO*2SiO₂ at 950°C

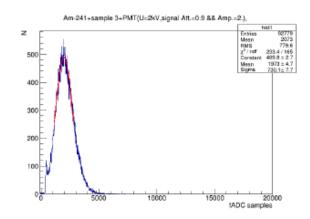

□ Nano-sized particles of **BaSi₂O₅**


- improve scintillation!
- Ba-Si system allows to incorporate trivalent ions: Lu, Dy, Gd, Tb, Yb, Ce

Status of New Glass/Ceramic Scintillator Material

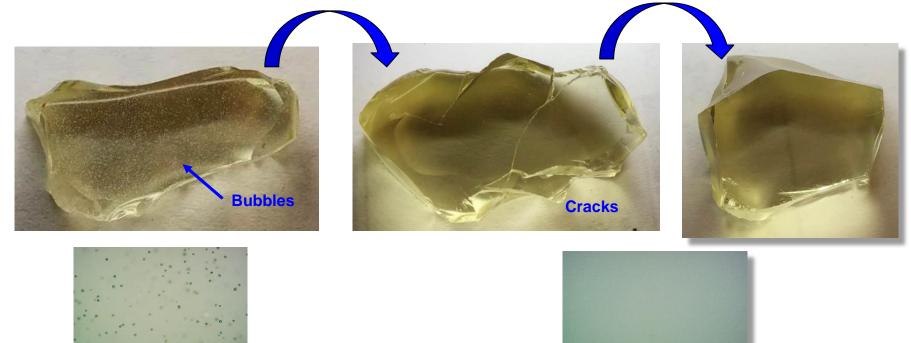
Transmittance of small samples comparable and sometime better than PbWO4

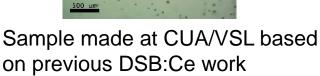




Status of New Glass/Ceramic Scintillator Material

□ Light yield of small samples comparable and sometime better than PbWO4


Ref.


Material/	PbWO ₄	Sample 1	Sample 2	Sample 3	Sample 4
Parameter					
Luminescence (nm)	420	440	440	440	440
Relative light output (compared to PbWO ₄)	1	35	16	23	11

Status of New Glass/Ceramic Scintillator Material

Uniformity remains a concern – manufacturing process requires optimization – progress with new method at CUA/VSL

Samples made at CUA/VSL with our new method₁₇

□ Resolution requirement different depending on EIC calorimeter regions

- Lepton backward at small angles most demanding PbWO₄
- PbWO₄ crystals are ideal for EIC EMCal, but also have limitations and are expensive
- □ Glass-based scintillators are cost-effective alternative to crystals, in particular in the outer endcaps and central EMCal regions
- □ Initial small samples produced at CUA/VSL have 35x light yield of PWO
 - > New method also eliminates bubbles, a major problem in earlier work
 - Next steps include: scale up and optimization of composition for sensitivity to EM probes