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EIC Calorimeter Consortium Goals

Develop calorimeters that meet the requirements of physics
measurements at an EIC — including all regions of the detector

Systematic uncertainties are expected to be the main limiting factor in extracting the underlying physics

0 Reduce systematic uncertainty on a broad range of physics measurements by
employing different technologies

L Broaden the spectrum to include new technologies that could potentially offer
improved performance, lower cost, mitigate risk and broaden user involvement
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Regions and Physics Goals

Calorimeter Design

Lepton/backward: EM Cal
o Resolution driven by need to determine (X,
Q?) kinematics from scattered electron

measurement
o Prefer 1.5%/NE + 0.5%

lon/forward: EM Cal

o Resolution driven by deep exclusive
measurement energy resolution with photon
and neutral pion

o Need to separate single-photon from two-
photon events

o Prefer 6-7%/E and position resolution < 3
mm

Inner EM Cal for for n < -2:

» Good resolution in angle to order 1 degree to
distinguish between clusters

» Energy resolution to order (1.0-1.5
%INE+0.5%) for measurements of the cluster
energy

» Ability to withstand radiation down to at least
2-3 degree with respect to the beam line.

Outer EM Cal for -2 <n < 1:
> Energy resolution to 7%/\E
» Compact readout without degrading energy
resolution
» Readout segmentation depending on angle

Barrel/mid: EM Cal
o Resolution driven by need to measure
photons from SIDIS and DES in range 0.5-5
GeV
o To ensure reconstruction of neutral pion
mass need: 8%/VE +1.5% (prefer 1%)

Barrel, EM calorimetry
» Compact design as space is limited
> Energy resolution of order 8%/\E +1.5%, and
likely better

lon/Forward: Hadron Cal
o Driven by need for x-resolution in high-x
measurements
o Need Ax resolution better than 0.05
o For diffractive with ~50 GeV hadron energy,
this means 40%/\E

Hadron endcap:
» Hadron energy resolution to order 40%/+E,
> EM energy resolution to < (2%/VE + 1%)
> Jet energy resolution < (50%/NE + 3%)




Electromagnetic Probes
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Scintillator Basics — photons from scintillation
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Requirements on calorimeter materials

O Light Yield — Conversion of energy into visible light

O Attenuation Coefficient — Radiation length

O Scintillation Response — emission intensity

O Emission spectrum matching between scintillator and photo detector —
emission peak

O Chemical stability and radiation resistance

QO Linearity of light response with incident photon energy
O Moliere radius for lateral shower containment

L Temperature stability



Scintillator Basics — stopping power
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Small Moliere radius good to contain shower
» Disadvantage: more sensitive to mismatches of tracking



Selection of Inorganic Scintillators

Material/ Density | Melt. | Rad. Moliere | Refr. Emission | Decay Light Rad. |Radiation
Parameter (g/cm3) | Point [Length |Radius [Index |peak time Yield Hard. |type
(°C) ()] ()] (ns) (y/MeV) | (krad)
1.50

Lt
BaF, 4.89 1280 2.03 3.10 300 650 16000 >50 Scint. 52.7
2.06 3.40 220 0.9 2000

CeF, 6.16 1460 1.70 2.41 1.62 340 5 2800 >100  Scint.
1.68 2.60 1.68 300 30

ClelO NN 7.13 1050 1.12 2.23 2.15 480 300 8000 >1000 .98 scint,

2.30 4000 02¢C

(PWO)PbWO, 8.30 1123  0.89 2.00 2.20 560 50 40 >1000 .90 scint.
0.92 420 10 240 10C

PbF, 7.77 824 0.93 2.21 1.82 280 <30 2-6 50 Pure C
310
(BSO):CeBi,Si,0, X 1030 1.85 2.06 470 =100 1000 >10  Scint.
505 4000
(LSO):CeLu,SiO; [l 2050 1.14 : 1.82 420 40 30000 >1000 .98 sint
.02¢C

ORI 740 2050 1. . 1.82 420 40 30000  >1000 .98 scint.
SiO, 02¢

Identical Volume: X3
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Regions and Physics Goals Calorimeter Design

[ Lepton/backward: EM Cal \Inner EM Cal for for n < -2:
o Resolution driven by need to determine (X, » Good resolution in angle to order 1 degree to
Q?2) kinematics from scattered electron distinguish between clusters
measurement > Energy resolution to order (1.0-1.5
o Prefer 1.5%/NE + 0.5% %INE+0.5%) for measurements of the cluster
\a» 4/ energy
lon/forward: EM Cal » Ability to withstand radiation down to at least
o Resolution driven by deep exclusive 2-3 degree with respect to the beam line.

measurement energy resolution with photon
and neutral pion

o Need to separate single-photon from two-
photon events

o Prefer 6-7%/E and position resolution < 3
mm

Backward/lepton Inner EM Cal — most demanding for high resolution



EIC EMCal Endcaps: PbWO,

0 PbWO, material of choice for EIC EMCal — stopping power, fast response, large
and granular solid angle, etc., but also limitations, e.g. hadron radiation damage

temperature dependence of different scintillators
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EIC EMCal Endcaps: PbWO,

d Another consideration: expensive ($15-25/cm3) and manufacturing uncertainty

» Despite progress (work with SICCAS and now also CRYTUR) still a struggle to
work with vendors to get reliable PbWO, crystals that would be compatible with
EIC requirements at small angles in the forward and backward regions
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Regions and Physics Goals

Calorimeter Design

Lepton/backward: EM Cal

O

O

Resolution driven by need to determine (X,
Q?) kinematics from scattered electron
measurement

Prefer 1.5%/\E + 0.5%

@EMCalfor-2<n<l: \

> Energy resolution to 7%/\E

lon/forward: EM Cal

O

Resolution driven by deep exclusive
measurement energy resolution with photon
and neutral pion

Need to separate single-photon from two-
photon events

Prefer 6-7%/VE and position resolution < 3
mm

» Compact readout without degrading energy
resolution
» Readout segmentation depending on angle

Barrel/mid: EM Cal

O

O

Resolution driven by need to measure
photons from SIDIS and DES in range 0.5-5

GeV likely better
To ensure reconstruction of neutral pion
mass need: 8%/VE +1.5% (prefer 1%) N

Barrel, EM calorimetry
» Compact design as space is limited
> Energy resolution of order 8%/<E +1.5%, and

/

Backward/lepton Outer EM Cal and barrel region — more relaxed on

resolution requirements



Glass-based Scintillators for Detector Applications

An alternative active calorimeter material that is more cost effective and
easier to manufacture than, e.g. crystals

Material/ Density | Rad. Moliere | Interact | Refr. [Emission | Decay Light Rad. Radiation | Zg
Parameter (g/cm3) | Length [Radius |Length |Index |peak time Yield Hard. type
(cm) (cm) (cm) (ns) (v/MeV) (krad)
240

(PWO)PbWO4 0.89 2.00 20.7 560 >1000 .90 scint.
0.92 18.0 420 10C

(BaO*ZSIOZ) Ce 3.7 3.6 2-3 ~20 440,460 | 22 >100 10 Scint. 51
glass 72 (no tests
450 >10krad
yet)
(BaO*2Si0O,):Ce 4.7-5.4 |22 ~20 440,460 |50 >100 10 Scint. 58
glass loaded with 86-120 (no tests
\ Gd 330-400 LS

Also: (BaO*2Si0,):Ce shows no temperature dependence

Shortcomings of earlier work:

» Macro defects, which can become increasingly acute on scale-up

» Sensitivity to electromagnetic probes



Material Overview

Technology: Glass production combined with successive
thermal annealing (800 — 900°C)

Phase diagram of the BaO*SiO, system
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O Nano-sized particles of BaSi,Og
» improve scintillation!

O Ba-Sisystem allows to incorporate
trivalent ions: Lu, Dy, Gd, Tb, Yb, Ce
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Y | Study of New Glass and Glass Ceramics Scintillation Material (Novotny et al., 2016+)




Status of New Glass/Ceramic Scintillator Material

O Transmittance of small samples

comparable and sometime better than
PbwO4 i
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Status of New Glass/Ceramic Scintillator Material

O Light yield of small samples comparable R —
and sometime better than PbWO4 2,

Charge
integration
time weind o
180ns
Hami 241 mpd PMT{U=2V signal Att.=09 L& Amp.=2 ]
Graph -
. = r Erines 'I;I?':
" F ';f: ThE
. 5001 vary £
oonf— a an 1127
E 00—
BII_— -
o | ol
Bn:-_— C
70| | ¥ amof- |
C J I f
| C
500 | IUHI 100 ‘u
S [, S
] 1 1 1 1 P
L} Fal 40 60 i oo [ ] 10000 15000 20000
HADC samplias

PbWO4 Sample 1 |Sample 2 |Sample 3 [Sample 4
Parameter

Luminescence (nm) 420

Relative Ilght output 1 35
compared to PbWO,

11

16 23

16



Status of New Glass/Ceramic Scintillator Material

O Uniformity remains a concern — manufacturing
process requires optimization — progress with
new method at CUA/VSL

Sample made at CUA/VSL based
on previous DSB:Ce work Samples made at CUA/VSL with our new method



Summary and Outlook

U Resolution requirement different depending on EIC calorimeter regions

» Lepton backward at small angles most demanding PbWOQO,

d PbWO, crystals are ideal for EIC EMCal, but also have limitations —
and are expensive

O Glass-based scintillators are cost-effective alternative to crystals, in
particular in the outer endcaps and central EMCal regions

O Initial small samples produced at CUA/VSL have 35x light yield of PWO

» New method also eliminates bubbles, a major problem in earlier work

L Next steps include: scale up and optimization of composition for

sensitivity to EM probes
18



