TCS Trigger

TCS signals from calorimeters Beam background rates
V. Tadevosyan

02/12/2021

Physics goals

$y \mathbf{P} \rightarrow \mathbf{e}^{+} \mathbf{e}^{-} \mathbf{P}^{\mathbf{\prime}}=$
TCS

$\operatorname{Sin}(\varphi)$ moment of transverse spin asymmetry vs φ_{S}, Dependence in GPD E and Ju,d (VGG model)

Bethe-Heitler

TSA as a function of φ and φ_{S}

- Sensitive to Im(interference), BH cancels
- Strong dependence in angular momenta, Sensitivity to GPD E (also to H, Ht)

Proposed TCS setup

$$
\gamma+p \rightarrow \gamma^{*}\left(e^{+}+e^{-}\right)+p^{\prime}
$$

- Detect $\mathrm{e}^{+}, \mathrm{e}^{-}$, recoil p^{\prime} in coincidence

TCS event sampling and analysis

TCS event generation:

- From DEEPGen generator
- Sampling phase space:

1) $5.5 \mathrm{GeV}<\mathrm{E}_{\gamma}<11 \mathrm{GeV}$ (Bremsstrahlung spectrum)
2) $4 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<9 \mathrm{GeV}^{2}$
3) $0 \mathrm{GeV}^{2}<-t<1 \mathrm{GeV}^{2}$

Selection and analysis of TCS events:

- Select e+, e- tracks within acceptance of a quadrant (passing through GEMs and hitting calorimeter);
- Select recoil proton within acceptance of a quadrant (passing through GEMs);
- Select the e-, e+ tracks inside calorimeter (inside of the outer rim of 1 module width ($\sim 20 \mathrm{~mm}, 1$ Moliere radius);
- Calculate energy depositions in the calorimeters from e+,e-.

Beam background simulations

CPS beam

- 2 mm rastered collinear bremsstrahlung photon beam , $\mathrm{E}_{\mathrm{MAX}}=11 \mathrm{GeV}$
- Energy range: 10 MeV -- 11 GeV
- Intensity: $2 \times 10^{13} \mathrm{~F} / \mathrm{s}$

Target assembly

- 3 cm diam., 3 cm long target cell of 0.9 mm thick Kel-F $\left(\mathrm{C}_{2} \mathrm{ClF}_{3}, \rho=2.13 \mathrm{~g} / \mathrm{cm}^{3}\right)$
$\bullet 0.7 \mathrm{mil} \mathrm{Al}$ cell entrance and exit windows
- Ammonia in LHe (at $\sim 4^{\circ} \mathrm{K}$), 0.6 packing fraction
- Scattering Chamber with 20 mil Al windows
- Magnet coils, LHe and LN Shields
- Chamber \& magnet rotated 90°
- Transverse magnetic field, 5T at center

$\mathrm{E}(\mathrm{e}-)$ at vertex

Edep(e-)

TCS events

Edep(e+)

Efficiency vs $\operatorname{Thr}(E++E-)(E+, E->1 G e V)$

Edep(e+) vs Edep(e-)

$E_{\text {DEP }}(e-), E_{\text {DEP }}(e+)$ thr. $[\mathrm{GeV}]$	$\mathrm{E}_{\mathrm{DEP}}(\mathrm{e}-)+\mathrm{E}_{\mathrm{DEP}}(\mathrm{e}+)$ thr.[GeV]	Efficiency [\%]
1.	5.	97.7 ± 0.1
1.5	5.	97.1 ± 0.1
1.	4.5	98.0 ± 0.1

Note: $e-\& e+$ tracks in opposite quadrants in $\sim 99.5 \%$ of cases.

Beam background

Rate $\sim 17 \mathrm{MHz}$ in a quadrant for Edep $>1 \mathrm{GeV}$.
Accidental coincidence rate in opposite quadrants for $\Delta T=10 \mathrm{~ns}$: $16.77 \cdot 10^{6} \times 16.77 \cdot 10^{6} \times 10 \cdot 10^{-9}=\mathbf{2 . 8 1} \mathbf{~ M H z}$

Beam background

Accidental coincidence rates in opposite quadrants, for $E_{1}>1 \mathrm{GeV}, \mathrm{E}_{2}>1 \mathrm{GeV}$.

Beam background

Accidental coincidence rates in opposite quadrants for $E_{1}>1 \mathrm{GeV}, \mathrm{E}_{2}>1 \mathrm{GeV}$. Rate reduction by several times due to cut on the summed deposited energy at $\sim 5 \mathrm{GeV}$.

Conclusion

- For TCS events, e- and e+ tracks are in opposite quadrants in $\sim 99.5 \%$ of cases.
- For TCS events, $\mathrm{E}_{1}>1 \mathrm{GeV}, \mathrm{E}_{2}>1 \mathrm{GeV}, \mathrm{E}_{1}+\mathrm{E}_{2}>5 \mathrm{GeV}$ cuts are $\sim 98 \%$ efficient.
- Accidental coincidence rate in opposite quadrants from beam background is $\sim 2.8 \mathrm{MHz}$, for time window $\Delta T=10 \mathrm{~ns}$ and $\mathrm{E}_{1}>1 \mathrm{GeV}, \mathrm{E}_{2}>1 \mathrm{GeV}$, linear in $\Delta \mathrm{T}$.
- The accidentals can be reduced by $5-6$ times with $\mathrm{E}_{1}+\mathrm{E}_{2}>5 \mathrm{GeV}$ cut implementation.
- Note: estimates are for full quadrants. Significant reduction of the accidental rates is expected with elimination of the "hot" channels in the calorimeters.

Backup slides

$E(e-)$ at vertex

Edep vs Evertex for e-

Background events, UVA trans. pol. target, Edep >0 MeV, rates [MHz]

Beam background hit pattern in the calorimeters.

Material before the calorimeters

Item	Material	Density[g/cm ${ }^{3}$]	Rad.Length[cm]	Thickness[cm]	Thick./RadL[\%]
Half of target	NH_{3}, Lhe	0.5482	78.685	1.5	1.906
Target end cap	Al	2.7	8.893	0.001778	0.020
LHe shield	Al	2.7	8.893	0.00381	0.043
LN2 scr. Window	Al	2.7	8.893	0.00381	0.043
Scat. Cham. window	Al	2.7	8.893	0.0508	0.571
GEMs (3 layers)			41.313	5.	
Hodoscope	Polystyrene	1.06	8.893	0.1	12.103
Case window	Al	2.7	28511.3	~ 100.	1.124
Air		0.00129			~ 0.351
Total				16.161	

GEMs thick./RL is expected to be small.

Calculation of accidental coincidence rate in opposite quadrants

Take rate R 1 for $\mathrm{E}_{\text {THR }}>1 \mathrm{GeV}$ in a quadrant from cumulative distribution (16.8 MHz)
Calculate average number of events in time interval ΔT : Nave $=R \times \Delta T$ (0.17 for $\Delta T=10 \mathrm{~ns}$)
For each event:
Sample E1 $>1 \mathrm{GeV}$ in a quadrant (from cumulative distribution);
Sample number of hits in the opposite quadrant N2, from Poisson distribution for Nave

Ncoin $=0$
For each hit in 2-nd quadrant:
Sample E2 $>1 \mathrm{GeV}$ (from cumulative distribution)

```
If (E1 + E2 > 5 GeV) Ncoin++
```

End:

```
F = Ncoin/Nevents
Rcoin = R1 x F
```


