# **TCS** Trigger

TCS signals from calorimeters Beam background rates

V. Tadevosyan 02/12/2021

#### **Physics goals**



# Proposed TCS setup

# $\gamma + p \rightarrow \gamma^* (e^+ + e^-) + p'$



- Detect e<sup>+</sup>, e<sup>-</sup>, recoil p' in coincidence
- UVA/Jlab NH<sub>3</sub> target, transversely polarized
- Detectors arranged in 4 quarters, oriented to target
- Triple-GEMs for e<sup>+</sup>, e<sup>-</sup>, p tracking
- Hodoscopes for recoil proton detection/PID
- *PbWO<sub>4</sub>* calorimeters for *e<sup>+</sup>*, *e<sup>-</sup>* detection/PID

# TCS event sampling and analysis

#### TCS event generation:

- From DEEPGen generator
- Sampling phase space:
  - 1) 5.5 GeV <  $E_{v}$  < 11 GeV (Bremsstrahlung spectrum)
  - 2) 4 GeV<sup>2</sup> < Q<sup>2</sup> < 9 GeV<sup>2</sup>
  - 3)  $0 \text{ GeV}^2 < -t < 1 \text{ GeV}^2$

### Selection and analysis of TCS events:

- Select e+, e- tracks within acceptance of a quadrant (passing through GEMs and hitting calorimeter);
- Select recoil proton within acceptance of a quadrant (passing through GEMs);
- Select the e-, e+ tracks inside calorimeter (inside of the outer rim of 1 module width (~20mm, 1 Moliere radius);
- Calculate energy depositions in the calorimeters from e+,e-.



Beam background simulations

#### CPS beam

• 2 mm rastered collinear bremsstrahlung

photon beam , E<sub>MAX</sub> = 11 GeV

• Energy range: 10 MeV -- 11 GeV

• Intensity: 2x10<sup>13</sup> γ/s

### Target assembly

- 3 cm diam., 3 cm long target cell of 0.9 mm thick Kel-F ( $C_2ClF_3$ ,  $\rho$ =2.13 g/cm<sup>3</sup>)
- •0.7 mil Al cell entrance and exit windows
- Ammonia in LHe (at ~4°K), 0.6 packing fraction
- Scattering Chamber with 20 mil Al windows
- •Magnet coils, LHe and LN Shields
- Chamber & magnet rotated 90°
- Transverse magnetic field, 5T at center









#### **TCS events**



## Beam background



Rate ~ 17 MHz in a quadrant for Edep > 1 GeV. Accidental coincidence rate in opposite quadrants for  $\Delta T=10ns$ : 16.77·10<sup>6</sup> x 16.77·10<sup>6</sup> x 10 ·10<sup>-9</sup> = **2.81 MHz** 

# Beam background



Accidental coincidence rates in opposite quadrants, for  $E_1 > 1$  GeV,  $E_2 > 1$  GeV.

# Beam background



Accidental coincidence rates in opposite quadrants for  $E_1 > 1$  GeV,  $E_2 > 1$  GeV. Rate reduction by several times due to cut on the summed deposited energy at ~ 5 GeV.

# Conclusion

- For TCS events, e- and e+ tracks are in opposite quadrants in ~99.5% of cases.
- For TCS events, E<sub>1</sub>>1GeV, E<sub>2</sub>>1GeV, E<sub>1</sub>+E<sub>2</sub>>5GeV cuts are ~98% efficient.
- Accidental coincidence rate in opposite quadrants from beam background is ~2.8 MHz, for time window  $\Delta T = 10$  ns and E<sub>1</sub>>1GeV, E<sub>2</sub>>1GeV, linear in  $\Delta T$ .
- The accidentals can be reduced by 5 6 times with  $E_1 + E_2 > 5$  GeV cut implementation.
- Note: estimates are for full quadrants. Significant reduction of the accidental rates is expected with elimination of the "hot" channels in the calorimeters.

# Backup slides



#### Background events, UVA trans. pol. target, Edep > 0 MeV, rates [MHz]



Beam background hit pattern in the calorimeters.

#### Material before the calorimeters

| ltem               | Material              | Density[g/cm <sup>3</sup> ] | Rad.Length[cm] | Thickness[cm] | Thick./RadL[%] |
|--------------------|-----------------------|-----------------------------|----------------|---------------|----------------|
| Half of target     | NH <sub>3</sub> , Lhe | 0.5482                      | 78.685         | 1.5           | 1.906          |
| Target end cap     | Al                    | 2.7                         | 8.893          | 0.001778      | 0.020          |
| LHe shield         | Al                    | 2.7                         | 8.893          | 0.00381       | 0.043          |
| LN2 scr. Window    | Al                    | 2.7                         | 8.893          | 0.00381       | 0.043          |
| Scat. Cham. window | Al                    | 2.7                         | 8.893          | 0.0508        | 0.571          |
| GEMs (3 layers)    |                       |                             |                |               |                |
| Hodoscope          | Polystyrene           | 1.06                        | 41.313         | 5.            | 12.103         |
| Case window        | Al                    | 2.7                         | 8.893          | 0.1           | 1.124          |
| Air                |                       | 0.00129                     | 28511.3        | ~100.         | ~0.351         |
| Total              |                       |                             |                |               | 16.161         |

GEMs thick./RL is expected to be small.

Calculation of accidental coincidence rate in opposite quadrants

Take rate R1 for  $E_{THR} > 1$  GeV in a quadrant from cumulative distribution (16.8 MHz) Calculate average number of events in time interval  $\Delta T$ : Nave = R x  $\Delta T$  (0.17 for  $\Delta T$ =10ns)

#### For each event:

Sample E1 > 1 GeV in a quadrant (from cumulative distribution); Sample number of hits in the opposite quadrant N2, from Poisson distribution for Nave

```
Ncoin = 0
For each hit in 2-nd quadrant:
Sample E2 > 1 GeV (from cumulative distribution)
If (E1 + E2 > 5 GeV) Ncoin++
```

#### End:

F = Ncoin/Nevents Rcoin = R1 x F

