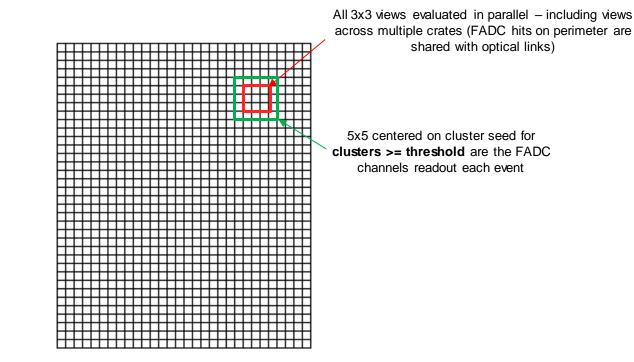
NPS Trigger/DAQ Feb 2, 2023

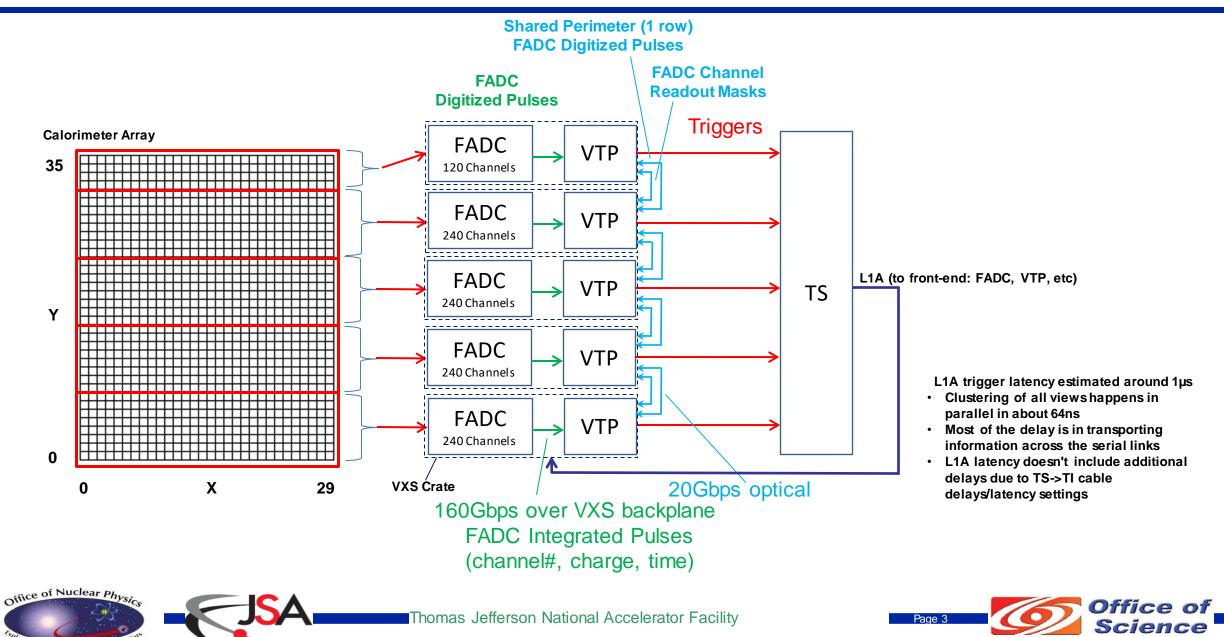
Benjamin Raydo FEDAQ Group (Physics Division)

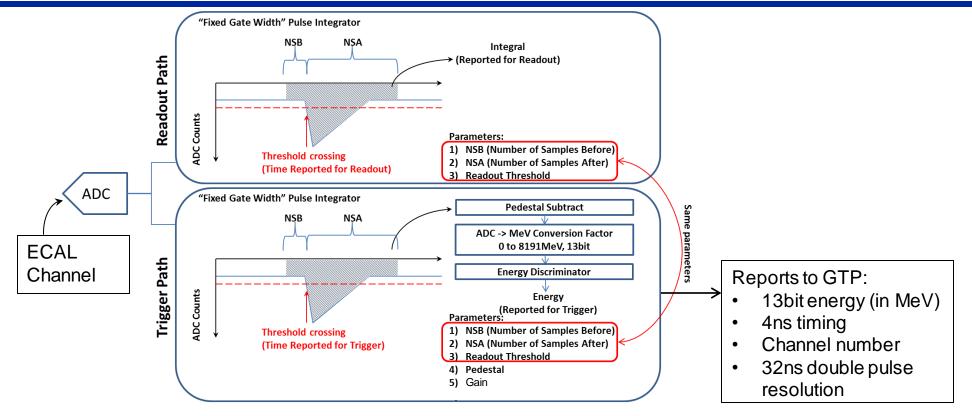

Thomas Jefferson National Accelerator Facility

Clustered trigger & readout

Goals

- 3x3 clustering trigger across full calorimeter: trigger on **clusters>=threshold**
- 5x5 full waveform readout centered on triggered clusters



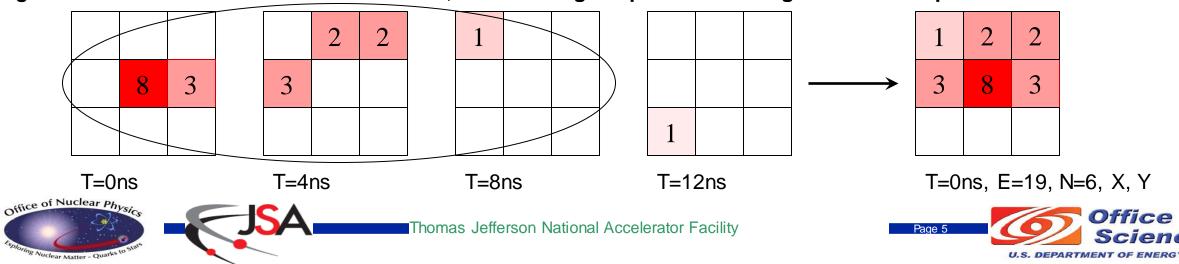

NPS Calorimeter DAQ/Trigger Setup

ar Matter - C

U.S. DEPARTMENT OF ENERGY

FADC – Pulse Processing

- Trigger pedestal is the same parameter that would be calculated for the readout data.
- Trigger gain parameter normally used to scale ADC -> MeV (makes VTP settings & diagnostics easy to read)
- Both pedestal and gain require calibration to determine parameters.

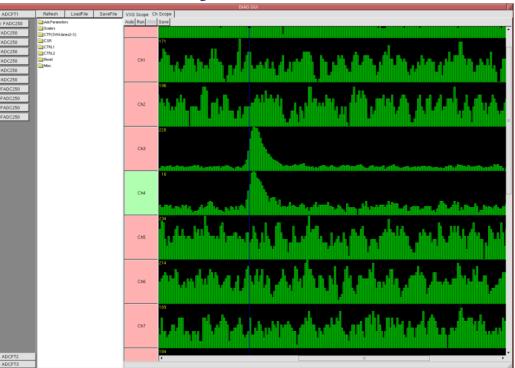


Cluster Finding

Cluster finding is done by (using 3x3 tower views, all views evaluated in parallel):

- Seed hit (center) must be >= seed threshold
- Seed hit must also be a local maximum in both space and time
- Cluster is reported with:
 - Timestamp of seed hit (large amplitude hit => lowest jitter)
 - Number of hits in cluster
 - X,Y position of seed hit
 - Energy in MeV units

e.g. for seed threshold of 2 and hit Δt =+/-8ns, the following hit pattern evolving in time will report 1 cluster:

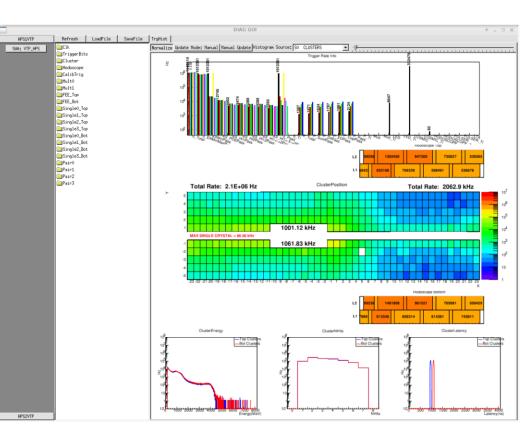

DiagGUI – FADC250

DiagGUI is a general purpose tool to gain register access to DAQ modules and display various diagnostics, histograms, scalers, etc...

- Runs parallel to DAQ operations...okay to view, but be careful as it allows changing module parameters on the fly! Really intended for 'expert' only.
- For example, you can look at any FADC250 waveforms and trigger on the

channels:

Office of Nuclear Pr



DiagGUI – VTP

On VTP, trigger features can be monitored (HPS calorimeter example shown)

- Triggered cluster rates as function of position
- Cluster energy distribution, and number of hit crystals forming cluster
- Can select individual channels

Trigger Configuration Files

Example/template trigger file (to be updated for NPS):

\$CLON_PARMS/trigger/HPS/Run2019/TEST/hps_ben_test.trg

Singles Setup:

Office of Nuclear Phys

ar Matter - C

Enable trigger VTP HPS SINGLE EN 1 0 # Minimum cluster energy: 1 to 8191, units MeV VTP HPS SINGLE EMIN 0 100 1 VTP HPS SINGLE EMAX 0 8191 1 VTP HPS SINGLE NMIN 0 1 # Minimum cluster x coordinate: -31 to 31 VTP HPS SINGLE XMIN 0 -311 # Cluster position dependent energy threshold coefficients # Cluster Energy >= C0 + C1*X + C2*X*X+C3*X*X*X VTP HPS SINGLE PDE 0 1.0 1.0 1.0 1.0 # Hodoscope trigger require hit on 11 require hit on 12 require hit on 11 and 12 with geometry matching require hit on 11 and 12 with cluster X geometry matching VTP HPS SINGLE HODO

Trigger Data Banks

Enabled trigger bits and clusters are written to events

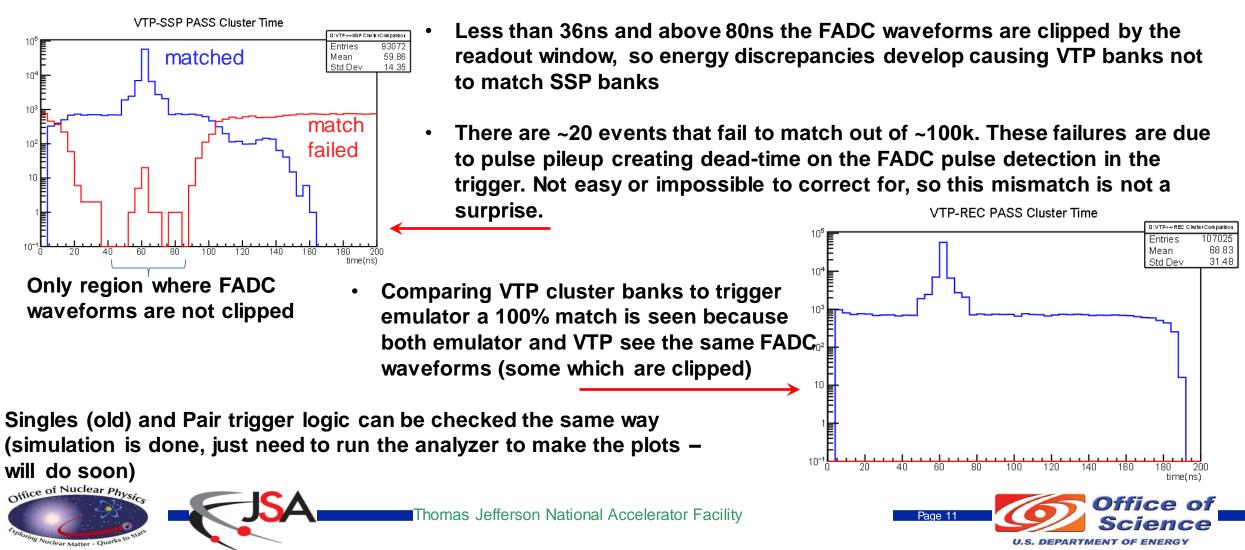
- These allow online/offline checking of the trigger decisions
- ...NPS format is slightly different than what is shown here ->

O(31:23)=0x10+0x0C2	"HPS_CLUSTER"
0(22:10)	"E"
0(09:06)	"Ү"
0(05:00)	"X"
1(13:10)	"N"
1(09:00)	"T"
O(31:23)=0x10+0x0C3	"HPS_SINGLE_TRIG"
0(22:20)	"INSTANCE"
0(19:19)	"TOP_NBOT"
0(18:18)	"H L1L2X GEOM PASS"
0(17:17)	"H L1L2 GEOM PASS"
0(16:16)	"H L2 PASS"
0(15:15)	"H L1 PASS"
0(14:14)	"PDE PASS"
0(13:13)	"MINX PASS"
0(12:12)	"NMIN PASS"
0(11:11)	"EMAX PASS"
0(10:10)	"EMIN PASS"
0(09:00)	"T" —

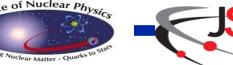
Firmware Simulation

VHDL, Verilog, C/C++ Simulator: Aldec Riviera

- Simulates source files used to compile FPGA projects
- Links to external libraries (e.g. C/C++ EVIO)
 - Can directly read and write DAQ EVIO files
 - Simulate firmware with runs and record new trigger bank structures
- Cycle accurate simulation of firmware
 - Some models are simplified for speed optimization (e.g. FADC trigger path & SerDes)
- Event simulation rate ~1Hz
 - Not very fast, but plenty can handle ~100k events in a day
- Can verify trigger logic
 - Can use cosmic and/or noise data from NPS calorimeter (before beam arrives)
 - Can use early beam data during commissioning for additional quick verification



Cluster verification (from HPS)


Examples of comparing ~100k clusters (timestamp, energy, nhits, X, Y) of new firmware against HPS run 8099 trigger banks:

Trigger Emulator

The trigger emulator is a basic ROOT based C++ analyzer

- Reads trigger banks and also reconstruct trigger banks from FADC waveforms
- Compares reconstructed trigger banks to recorded ones reports on discrepancies
- Measures/estimates rates of trigger bits from random trigger
 - A single random trigger run can be taken and fed through the program under various settings to tune parameters
 - These rates should match the running trigger bit rates as well another good verification step
- Written for Hall B HPS planning to update for NPS

Summary

- Trigger firmware is ready, but hardware testing is required (expected to happen in the next week or two)
- Simulation verification is completed (clusters trigger looks good)
- Need to implement the VTP FADC 5x5 channel mask readout firmware feature – will take a few days effort. Something expecting to do once cluster trigger is up and running

