Jets at the Electron Ion Collider

Duff Neill LANL

Catholic University of America EIC Users' Meeting

August 1, 2018

Duff Neill LANL Jets at the Electron Ion Collider

When presented with a nucleon or nucleus or neutron star:

- Static: What is it?
- Dynamics: What happens when I hit or smash it?

So for EIC, whence the static and dynamic properties of hadrons, in terms of their underlying partonic degrees of freedom?

$$\mathcal{L}^{\text{QCD}} = \frac{1}{4} \text{tr} \Big[F_{\mu\nu} F^{\mu\nu} \Big] + \sum_{i} \bar{\psi}_{i} \Big(i \not\!\!D - m_{i} \Big) \psi_{i}$$

Two approaches to QCD manifestly use partons:*

- Lattice QCD: Evaluate hadron static properties with local Quark and Gluon Matrix Elements.
- Factorization: Describe dynamic cross-sections as products of Non-Local Quark and Gluon Matrix Elements.

Both claim model-independent all-orders or non-perturbative accuracy.

*As opposed to χ -PT.

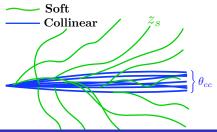
To discuss Jets, we must discuss Factorization.

æ

< ∃ ► <

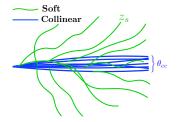
Factorization and The "States" of Perturbation Theory

- High energies, no intrinsic scale, except hard interaction at Q^2 .
- (Most) Quarks and gluons are massless when on-shell: $p_g^2 = p_q^2 = 0.$
- Continuous spectrum and long range-interactions.


$$m_{ab}^2 = (p_a + p_b)^2 = 4E_a E_b \sin^2 \frac{\theta_{ab}}{2} \sim Q^2 z_a z_b \theta_{ab}^2$$

Close to on-shell:

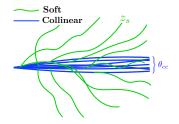
• Soft:


$$\left(\sum p_s\right)^2 \sim Q^2 z_s^2 \ll Q^2$$

• Collinear: $\left(\sum p_c\right)^2 \sim Q^2 \theta_{cc}^2 \ll Q^2$

Duff Neill LANL Jets at the Electron Ion Collider

Power Counting The "States" of Perturbation Theory


$$p = (\bar{n} \cdot p, n \cdot p, p_{\perp})$$
$$p_c \sim Q(1, \theta_{cc}^2, \theta_{cc}) \qquad \qquad p_s \sim Q(z_s, z_s, z_s)$$

Close to on-shell:

• Soft:
$$\left(\sum p_s\right)^2 \sim Q^2 z_s^2 \sim n \cdot p_s \bar{n} \cdot p_s - \vec{p}_{s\perp}^2$$

• Collinear: $\left(\sum p_c\right)^2 \sim Q^2 \theta_{cc}^2 \sim n \cdot p_c \bar{n} \cdot p_c - \vec{p}_{c\perp}^2$

Why do jets form?

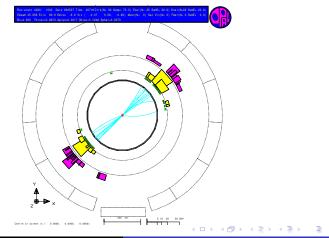
Soft and Collinear regions are prefered.

Relating n to n+1 parton cross-sections:

$$d\sigma_{n+1} \sim \alpha_s(Qz\theta) \frac{d\theta}{\theta} \frac{dz}{z} d\sigma_n$$

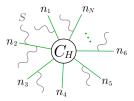
Once we probe with a Q^2 with tens of GeV, jets will form.

Factorization:


- Distinct Collinear Regions do not interact.
- Soft radiation resolves directions and total color charge.
- High energy processes arrange themselves into jets.

This encompasses much more than PDFs, TMD-PDFs, FFs, TMD-FFs.

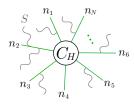
Factorization Intuition


At a large $Q^2\colon$

- Short-distance physics perturbative: asympotic freedom.
- Fast moving partons quickly out of casual contact.
- Bulk momentum flow set by perturbative dynamics.

Questions of Jet Physics

Hard Scattering sets bulk momentum flow.



- What are the momentum fluctuations about this bulk flow?
- How are spin, color, flavor transported to the infra-red?
- How do the partonic fields become hadrons?
- Does the measurement respect the jet decomposition?
- When do media change the transport?

Factorization:

Separating a cross-section into a finite product of non-trivial distributions, with support in distinct momentum regions.

$$\frac{d\sigma}{d\tau} = \operatorname{tr}[C_H(Q^2,\mu)S(\tau,\mu)C_H^{\dagger}(Q^2,\mu)] \otimes J_{n_1}(\tau,\mu) \otimes J_{n_2}(\tau,\mu) \otimes \dots + O\left(\frac{\tau^2}{Q^2}\right)$$

- τ observable specifying N-jets.
- J energetic jets or beams contribution to τ .
- S soft radiation contribution to τ .
- Resummation with renormalization group.
- Universality of Asymptotics of QCD (Reusability of *H*, *J*, *S*)

Factorized Form of Q_T Spectrum, or 0-jet Cross-Section

Factorized Momentum Spectrum (Drell-Yan):

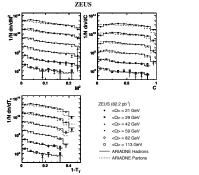
$$\begin{split} \frac{d\sigma}{dyd^2\vec{Q}_TdQ^2} &= \sigma_0 \int \frac{d^4q}{(2\pi)^3} \delta^+ (n \cdot q \,\bar{n} \cdot q - Q^2) \delta\Big(y - \frac{1}{2} \ln \frac{n \cdot q}{\bar{n} \cdot q}\Big) \delta^{(2)}(\vec{Q}_T - \vec{q}_\perp) \\ &\int d^4 b e^{ib \cdot q} H_{q\bar{q}}(Q) B_{n,q/N_A}(0, n \cdot b, \vec{b}_\perp) B_{\bar{n},\bar{q}/N_B}(\bar{n} \cdot b, 0, \vec{b}_\perp) S(0, 0, \vec{b}_\perp) \\ &+ \mathbf{q} \leftrightarrow \bar{\mathbf{q}} + O\bigg(\frac{Q_T^2}{Q^2}\bigg). \end{split}$$

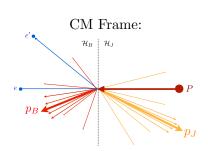
$$B_{n}(b^{+}, b^{-}, \vec{b}_{\perp}) = \operatorname{tr}\langle N(P) | \bar{\chi}_{n}(b) \frac{\vec{p}}{2} \chi_{n}(0) | N(P) \rangle ,$$

$$S(b^{+}, b^{-}, \vec{b}_{\perp}) = \frac{1}{d_{a}} \operatorname{tr}\langle 0 | \operatorname{T} \{ S_{\bar{n}}^{\dagger}(0) S_{n}(0) \} \overline{\operatorname{T}} \{ S_{\bar{n}}^{\dagger}(b) S_{\bar{n}}(b) \} | 0 \rangle ,$$

$$\chi_{n}(x) = W_{n}^{\dagger}(-\infty, x) \psi_{n}(x)$$

$$W_{n}(x) = \operatorname{P} \exp \left(ig \int_{-\infty}^{0} ds \, \bar{n} \cdot A(x + s\bar{n}) \right) ,$$


$$S_{n}(x) = \operatorname{P} \exp \left(ig \int_{-\infty}^{0} ds \, n \cdot A(x + sn) \right) .$$


What has been done with jets at e^+e^- and e^-p machines?

- Inclusive jet production at R, p_T
- Fragmentation
- Event shapes

Main reasons: History and α_s .

Jets in e - p at HERA

[ZEUS: hep-ex/0604032],

See also [H1: hep-ex/0512014], Factorization:

$$\frac{d\sigma}{de} = HB \otimes J \otimes S$$

Specific convolution structure depends on jet definition: [Kang, Lee, Stewart 1303.6952]

Duff Neill LANL Jets at the Electron Ion Collider

LHC juiced study of jets:

• What does the pattern of radiation in a jet reveal about its origin?

Review of Jet Substructure, with approx. 450 references: [Larkoski, Moult, Nachman, 1709.04464]

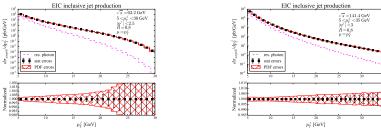
See talks from last weeks' Brookhaven conference: "Probing Quark and Gluon Matter with Jets" What about EIC?

-∢ ≣⇒

크

Observations:

- Factorization: Jets are the direct manifestation of parton dynamics.
- **Confinement:** Hadrons are "bags" of strongly bound-partons


So why not hit the nucleus or nucleon with a jet?! This is something the EIC can do, no-one else has done with $e - A^*$

*Except maybe Fermilab E665, 1994

This is reason enough to think about jet physics at EIC.

Issue: Low Q^2

The EIC can make jets, but low multiplicity and Energy.

[Boughezal, Petriello, Xing 1806.07311]

This will limit how much jet substructure can be studied.

- Multiplicity
- Fragmentation
- Thrust, Angularities, Mass, Broadening...
- Jet axes, Jet Shape

Therefore Jets at EIC will test the limits of the factorized description of jet cross-section. However, compared to LHC.

• Little Underlying Event

New testing ground for

- Local Parton-Hadron Duality?
- String Fragmentation?
- Breakdown of Coherence?
- Substructure?
- α_s ?

Mind the $O\left(\frac{\tau^2}{Q^2}\right)$ at the EIC

Given the low energies, are changes to jet spectra from:

- e A and e p: non-perturbative components of B, J, S?
- e A: changes in evolution
 [Mehtar-Tani, Salgado, Tywoniuk 1102.4317], [Sievert, Vitev 1807.03799] ?
- Subleading power factorization?

[Boughezal et. al. 1802.00456], [Ebert et. al. 1807.10764]

Ultimately, how and whether these questions will be answered depends on the reach of the kinematic scan of the EIC.