Time-like Compton Scattering with Compact Photon Source

Vardan Tadevosyan (AANSL)

NPS/CPS Collaboration Meeting JLab, 1/23/2018

Outline

Physics case and motivation Experimental setup Summary and Outlooks

Hall C TCS basic concept

Physics case

M.Boer et al, arXiv:1501.00270

- BH produces same final state as TCS.
- At Jlab energies $\sigma_{BH} >> \sigma_{TCS}$ (10--100 times).
- But, TCS interferes with BH: $d^4\sigma = |T^{BH}|^2 + |T^{TCS}|^2 + (T^{BH} \cdot T^{TCS})$
- TCS signal magnify in interference with BH.
- TCS signal can be detected in BSA and/or TSA.

Physics Case

TCS attainable in interference with BH, sensitive to GPDs.

Physics case: TCS -- DVCS relations

☐ DVCS and TCS, limiting cases of double DVCS (DDVCS)

$$\gamma^*(q) + P(p) = \gamma^*(q') + P(p').$$

- \square At leading order of α_S and leading twist **CFFs are complex conjugate**.
- □ NLO and HT effects different in space-like and time-like, can be evaluated from TCS/DVCS.
- ☐ Comparison of DVCS and TCS, test for universality of GPDs.
- ☐ Complementarity of observables sensitive to different CFFs.
- \Box Combine DVCS and TCS data \rightarrow reduce uncertainties of the CFF fits over DVCS only.

See M.Boer, GPD studies with exclusive dileptons photo- and electro-production, INT Workshop, University of Washington, 08/28-09/01, 2017.

TCS at JLab

Hall B CLAS 6 GeV, exploratory measurements in 2012

- Quasi-real photons from e- beam on unpolarized target
- Cross section, $\cos \varphi$ moments
- Data taken in 2012, analyzed.

Hall B CLAS12 E12-12-001

- Unpolarized cross section and BSA with circularly polarized photon beam
- Sensitive to Re(Amplitude), Re(H), Im(H), $Im(\widetilde{H})$
- Approved, part of Run Group A, data taking in 2018

Hall A SoLID E12-12-006A

- Complementary to CLAS12: same observables, higher luminosity, different acceptance
- Approved to run with E12-12-006 (SoLID $J/_{\Psi}$)

Hall C LOI 12-15-007

- Transversely polarized target, (circularly polarized) untagged photon beam
- Cross section, TSA, (DSA)
- Sensitive to Re(Amplitude), H, $Im(\widetilde{H})$, Im(E)
- Similar sensitivity to Im(E) as DVCS with trans. pol. target
- High statistics with photon beam on polarized target!

Experimental Setup

- Compact Photon Source to deliver beam of untagged photons
- UVA NH₃ transversely polarized target
- Beam pipe of large critical angle
- Detector package of trackers, hodoscopes and calorimeters

CPS concept

Stage-2 modeling, October 2017, B.Wojtsekhowski

- Up to 2.7 μA, 11 GeV e- beam incident
- 10% radiator to produce (untagged) γ beam
- 3.2 T, 40 cm magnet to bend residual e^-
- Magnet serves as a beam dump
- High Z shielding to minimize prompt radiation and residual activation

- 2x2 mm² rasterized photon beam
- Water cooled Cu heat absorber (30 kW)
- W powder external shield (16 $^g/_{cm^3}$)
- Segmented, flared beam line to reduce radiation leak
- Radiation from source few times less than from y beam interaction with target

Pure photon beam on solid polarized target versus mixed e^-/γ beam:

- increase of useful photon flux by 18 times ($\sim 10^{12} \, ^{\gamma}/_s$);
- less heat load, increase of max. polarization from 90% to 95%;
- less rad. damage to target material, less depolarization -> increase of average polarization from 70% to 90%.

Overall increase of FOM 30 times!

UVA polarized target

UVA target, nominal configuration

Target material: ammonia (15NH₃₎), in LHe. 5T (uniform to 10⁻⁴) mag. field generated by superconducting Helmhotz coils. DNP Polarization by 140 GHz, 20 W RF field. Target polarization monitored via NMR Qmeter.

UVA target, TCS configuration

OVC and magnet rotated by 90° around vertical axis.

Sideways magnetic field and polarization. Angular acceptance $\pm 17^{\circ}$ horizontally, $\pm 21.7^{\circ}$ vertically.

Trackers

- Trackers will be used for reconstruction of trajectories and as a start-time for TOF.
- Construction analogous to Scintillating Fibre Tracker (SFT) in HERMES Recoil Detector.
- Can be constructed from 1mm Kuraray SCSF-78 fibers with rad. resistance ~100 Gy/yr.
- X and Y planes of $\sim 15 \times 33$ cm² area. ~ 150 and 330 fibers per plane. Accuracy ~ 0.9 mm.
- Multi-anode phototubes (64 channel Hamamatsu) for read-out of fibers.
- High magnetic field at Trackers, \sim 1.5 kG. Light from both sides transported to PMTs by \sim 2.5 m long Wave-Length-Shifters, to where field is below \sim 100 G (like in SANE).

GEM trackers as alternative

- Sub-mm position accuracy
- Single electron sensitivity
- Long-term stability and reliability
- High rate capability
- Magnetic field tolerance up to 1.4 T
- Good radiation resistance

F.Sauli, NIMA 805 (2016) 12-24

Use at Jlab: SBS, SoLID DDVCS, Prad, SHMS GEM Tracker

Fig. 3. Schematics of single GEM detector with Cartesian two-dimensional strip readout.

Hodoscopes

- Hodoscopes for reconstruction of recoil proton (P_p , ϑ_p , ϕ_p). Crucial for determining -t.
- Proton identification with TOF and dE/dx. Expected time resolution ~200 ps.
- X and Y planes from 1 cm thick scintillator.
- Eff. area $\sim 108 \times 48 \text{ cm}^2$ (150 cm from target) to cover $\pm 20^{\circ}$ horizontally, 6° --22° vertically.

Micro-pattern gaseous detectors MPGDs (GEM, THGEM) as alternative

HODO dE/dX

0.6

0.7 0.8 0.9 1

Calorimeters

- Detect and identify leptons, measure energy and X and Y coordinates. Define $Q'2, \xi$ and τ .
- A pair of similar to the NPS PbWO calorimeters.
- **Angular acceptance** ±18° horizontally, 6°-21.7° vertically
 - 98×47 cm² active area at 150 cm from target;
 - $50 \times 23 = 1,150$ blocks total for each calorimeter (~NPS size).

Progress in NPS construction

- 360 PbWO crystals from SICCAS obtained, under evaluation at Jlab, CUA
- 100 R4125 Hamamatsu PMTs obtained
- PMT base prototyped and tested, design construction chosen
- Design of support structures, enclosure underway

Kinematic coverage

BH singularities at $(\theta_{CM}, \varphi_{CM}) = (180^\circ, 0^\circ)$ and $(0^\circ, 180^\circ)$ avoided. $\theta_{CM} \sim 90^\circ \rightarrow \max A_{Ux}$.

Phase space coverage

N	ξ limits	$Q^{'2}$ limits (GeV^2)	-t limits (GeV ²)
1.0	0.10, 0.15	4, 6	0.1, 0.35
2.0	0.15, 0.20	4, 6	0.1, 0.35
2.1	0.15, 0.20	4, 6	0.35, 1
3.0	0.20, 0.30	4, 6	0.1, 0.35
3.1	0.20, 0.30	4, 6	0.35, 1
4.0	0.15, 0.30	6, 9	0.1, 0.35
4.1	0.15, 0.30	6, 9	0.35, 1

Example phase space division for study of Q^2 , ξ and t dependences.

Summary and Outlook

Studies on the NPS calorimeter's constituents (crystals, PMTs) proceed in good pace.

LOI on TCS in Hall C at JLab presented before PAC 43, welcomed.

- ✓ Physics case established
- ✓ Design construction of setup outlined
- ✓ Results from preliminary simulations shown.

On the way of developing a full proposal...

- Update of the Physics Case is under way (M.Boer).
- > Tuning of Generator TCS code (TCS event generator from M.Boer) to be done.
- Development of Geant4 based simulation code of the TCS setup is in progress.
- ➤ Simulations of the measured asymmetries with Generator_TCS and G4 TCS setup simulation codes are needed.
- ➤ A thorough examination of expected results from experiment, from point of view of GPD analyses is needed.
- Fine tuning of the design setup is needed.
- Interested in development of High Intensity Photon Source!
- Interested in the UVA target field modifications!

Backup slides

CPS concept

TCS UVA Polarized Target

UVA polarized target, cross section view. (Adopted from J. Zhang)

Used in E93-026, E01-006, SANE.

Target material: ammonia (15NH₃₎), doped with paramagnetic centers, immersed in LHe (high polarizability, large nucleon content, resistance to rad. damage).

5T (uniform to 10^{-4}) magnetic field generated by pair of superconducting Helmhotz coils (axis known to 0.1°).

Dynamic Nuclear Polarization (DNP) by 140 GHz, 20 W (max) RF field.

Polarization decays due to radiation damage (from above 80% to 60% in 8 hours for 100 nA beam current, typically).

Target polarization monitored via NMR Q-meter.

Needs annealing (heating to 70-100 K for 10-60 min).

Will be rotated by 90° around vertical axis.

Angular acceptance $\pm 17^{\circ}$ horizontally, $\pm 26.5^{\circ}$ vertically.

TCS Analysis Options

- Significant magnetic field from target, mostly transverse and confined in R < 20 cm.
- Bends vertically e⁺, e⁻ by ~2.5°, and p by 20 °!
- Will reconstruct tracks at vertex (provided field is mapped to good accuracy).
- Reconstructed momenta can be used in conjunction with β_{TOF} for PID.

Deflections of accepted tracks in the target magnetic field (BdL~0.7 Tm) relative to directions at target (from simulations).

Kinematic Coverage

Setup with **full acceptance** calorimeters.

Accepted triple coincidence events.

Phase Space Binning

N	ξ limits	Q' ² limits (GeV ²)	-t limits (GeV ²)
1.0	0.10, 0.15	4, 6	0.1, 0.35
2.0	0.15, 0.20	4, 6	0.1, 0.35
2.1	0.15, 0.20	4, 6	0.35, 1
3.0	0.20, 0.30	4, 6	0.1, 0.35
3.1	0.20, 0.30	4, 6	0.35, 1
4.0	0.15, 0.30	6, 9	0.1, 0.35
4.1	0.15, 0.30	6, 9	0.35, 1

Phase space division. Will study Q^2 , ξ and t dependences.

Count rates in $14\phi_{CM}$ bins.

Preliminary result from G4 simulation

Beam mode

Significantly lower background hit load from photon beam than from electron beam.

Preliminary result from G4 simulation

TCS mode

Energy depositions

TCS kinematics and cuts

$$\sigma_{TCS} = F(Q'^2, t, \theta_{CM}, \phi_{CM})$$

Analysis cuts:

To have GPD interpretation of TCS:

$$Q'^2 \gg m_N^2$$

$$\frac{|t|}{Q'^2} \ll 1$$

From DVCS and DIS:

$$Q'^2 > 2 \ GeV^2$$
 (keeps di-lepton system out of resonances)
-t < $1 \ GeV^2$ (or $\frac{-t}{O'^2}$ < 30%)