Scope of the MPGD Endcap Trackers

Are the technical performance requirements appropriately defined and complete for this stage of the project?

• In May 2023, MC simulations showed that the **tracking** configuration in the **endcap** regions of the ePIC detector, which will experience the **highest backgrounds** in the experiment, **would not provide enough hit points** in the $|\eta| > 2$ region for good pattern

ePIC tracker geometry before June 2023

Scope of the MPGD Endcap Trackers

• Adding two MPGD Endcap Tracking (ECT) disks both in the hadronic and in the leptonic regions increased the number of hits in the $|\eta| > 2$ region to improve pattern recognition.

Present ePIC tracker geometry

Detector Geometry: Envelope and Active Regions

The geometrical envelopes are available at: https://eic.jlab.org/Geometry/Detector/Detector-20240117135224.html

Endcaps Envelope Dimensions - Beam Pipes Envelope Radii and Offsets

MPGD Disk	Max Z Pos (cm)	Disk Outer Radius (cm)	Outer Active Reg. radius (cm)	Calculated Beam pipes radii (mm)	Offset (mm)	Disk Inner Radius (cm)	Inner Active Reg. radius (cm)
HD MPGD 2	163.5	50	45	55.8	22.5	8	9.5
HD MPGD 1	150.5	50	45	53.1	19.9	8	9.5
LD MPGD 1	-112.5	50	45	37.7	-3.1	4.5	6.0
LD MPGD 2	-122.5	50	45	39.2	-3.4	4.5	6.0

Disks Outer Radius

50 cm external radius
 → 45 cm of active area

considering a 5 cm outer ring for gas frames and services location.

Disks Inner Radius different for the two HD and LD

regions

•HD: 8 cm inner radius
→ 9.5 cm radius of active area

LD: 4.5 cm inner radius
→ 6 cm radius of active area considering 1.5 cm gas frame

Pseudo-rapidity coverage: effective η ranges

Component	Z (cm)	Inner Active Reg. Radius (cm)	<i>θ</i> min (deg)	η max	Outer Active Reg. Radius (cm)	<i>θ</i> max	$ \eta $ min
HD MPGD 2	162	9.5	3.35	3.53	45	15.52	1.99
HD MPGD 1	148	9.5	3.67	3.44	45	16.91	1.9
LD MPGD 1	-111	6	3.09	3.61	45	22.07	1.63
LD MPGD 2	-121	6	2.83	3.69	45	20.40	1.72

• The minimum $|\eta|$ value is not larger than 2 it is limited by the outer HD disk location/dimensions

• The maximum $|\eta|$ value is not less than 3.44 it is limited by the inner HD disk location/dimensions

The η range covered by the MPGD Endcap tracking disks is **compliant** with requirements.

Technical Performance Requirements

Time resolution 10 ns time to provide tracking timing

- Fast rise time ~ $20 \div 50$ ns
- Peaking time 50 ns
- Sampling faster than 50 MHz

Low material budget

• 1-2 % X_0 - it will be the minimum compatible with the chosen technology (to be detailed!)

Spatial resolution: 150 μ m or better

- <150 μ m intrinsic spatial resolution for perpendicular tracks
- Technological optimizations to retain 150 μ m resolution for inclined/curved tracks

High Efficiency

• Single detector efficiency ~ 96 – 97 % \rightarrow 92 – 94 % combined efficiency for two disks

Detector performance and construction plans

Are the plans for achieving detector performance and construction sufficiently developed and documented for the present phase of the project?

(X, Y) read-out geometry

PROs	CONs
The strip length does not vary much along the active area	Alignment is critical
All readout FE hybrids may be located outside the active area	Routes to read-out connectors must be accurately studied

- (X, Y) readout is preferred vs (R, φ) no FEB on the active area
- 500 μm pitch \rightarrow better than 150 μm intrinsic position resolution
 - Strips routing details need to be studied we need to start

Detector Technology

- GEM- μ Rwell hybrid configuration has been chosen to increase the gain in the 10 000 \div 20 000 range
- 2D strip read-out using a "COMPASS-like" scheme
- 500 μm pitch guarantees a spatial resolution better than 150 μm (no need of capacitive sharing)
- Technological solutions exist to retain 150 μm position resolution also for inclined/curved tracks ($\theta < 25 \text{ deg}$)
- A gas gap lager than 3 mm is compatible with single detector efficiency larger than 96%

All R&D Studies for EIC disks performed within eRD108 and in synergic collaboration with INFN-LNF and JLAB Electron-Ion Collider

Detector Technology

GEM - μ Rwell Technology + μ TPC reconstruction

Detector, Electronics Readout, and Services

Are the current designs and plans for detector, electronics readout, and services sufficiently developed to achieve the performance requirements? MPDG Endcaps semi-detectors overlap The split may be mounted to be either horizontal or vertical 1000 mm 1000 mm 525 mm 525 mm The two half disks will have 2 cm of active area overlap

Detector, Electronics Readout, and Services

Are the current designs and plans for detector, electronics readout, and services sufficiently developed to achieve the performance requirements?

1000 mm

MPGD Endcaps configuration

- The two disks are mounted facing each another
- The FEBs are connected perpendicularly to the disks and will not overlap the active area

EIC Endcaps – open options

PRUS	CONS
One vertical/horizontal overlap only – less material	Larger detector surfaces are more difficult to handle.
The two endcaps may be rotated by 90° one respect to the other to recover overall symmetry	Longer strips: → Readout should be segmented into two sectors to avoid too long strips

PROs	CONs
Smaller dimensions are easier to handle	Two vertical and horizontal overlapping regions – more material
Each endcap is intrinsically symmetric	We need to study how to attach two quadrants in a semi- circle
Strips length are shorter	
GEM foils are easier to stretch	

Services

Electronics Readout based on SALSA ASIC developed at Saclay

For each endcap disk (4 disks in total):

- 16 HV cables
- 4 gas inlets and 4 gas outlets
- 32 data cables
- 32 low voltage cables
- 2 temperature sensors cables
- 2 humidity sensors cables
- 2 inlet and 2 outlet cooling hoses (dry-air or liquid)
- Space for 32 RDO cards

All the service requirements have been communicated to the Integration group

4 disks

Fabrication and Assembly Plans

Are the fabrication and assembly plans for the various tracking detector systems consistent with the overall project and detector schedule?

- Design by end of 2024
- 2025 2026 pre-production and Engineering Test Article
- 2027 2029 production & QA
- 2030 Commissioning & Installation

MPGD Timeline			DURATION	
START DATE	END DATE	DESCRIPTION	(years)	
3/1/24	12/31/24	Detectors Overall Design	<1	
1/1/25	12/31/26	Pre - Production	2	
1/1/27	31/12/29	Production & QA	3	
1/1/30	6/1/30	Commissioning & Installation	0.5	

Electron-Ion Collider

Charge 5

Involved Institutions & Workforce

INFN Workforce:

Roma Tor Vergata

Coordinator: A. D'Angelo, Detector Hardware and QA: E. Sidoretti (PhD) A. Fantini, L. Lanza Simulation & Reconstruction: L. Lanza, A. Fantini, R. Di Salvo FEB Electronics: R. Ammendola

• Genova

- FEB Electronics: Paolo Musico, M. Battaglieri (streaming ro)
- Catania

Simulation & Reconstruction: Mariagela Bondi'

The work will be performed in close connection with: the group of Gianni Bencivenni @ INFN LNF and with the JLab detector group (Kondo Gnanvo, Seung Joon Lee)

Interest in the project has been expressed also by: BNL (A. Kiselev et al.), Florida Tech.(M. Hohlmann et al.), Temple U. (M. Posik, et al.)

Detector Integration in ePIC

The assigned envelope will include the detectors and the FEB electronics. The disks will be attached together and to the support frame under design.

To Do List

- Test beam in Fall 2024 to charecterize the μ Rwell + GEM configuration: 400 μ m pitch: 250 μ m w x – 80 μ m w y: 6 mm drift gap+3 mm transfer gap
- Test beam in Fall 2024 to characterize the μ Rwell + GEM configuration in μ TPC mode
- Decide about the 4-quadrants option (GEM foil is easier to stretch uniformly)
- Work on the 500 μm pitch routing to the connectors
- Calculate the material budget of the final configuration

Summary

- Geometrical Acceptance and Technical Performances of hybrid GEM-μRwell endcap trackers have been defined.
- A detector layout compliant with requirements has been identified.
- Readout Electronics is based on SALSA ASIC developed at Saclay.
- Production timeline is consistent with the overall ePIC detector schedule.
- The two disk couples are rigidly connected and attached to the inner tracker support via multiple points (~ 6 points/disk).
- INFN workforce and laboratories are involved in the construction + BNL, Florida Tech and Temple U. have expressed their interest in the project

Back-up Slides

Technical performance requirements

Are the technical performance requirements appropriately defined and

complete for this stage of the project?

- Rate Capability
 - Not critical ~ 1 kHz/cm² or less
- Radiation Hardness
 - Not critical for the detectors
 - Important for FEBs and RDO electronics boards
- Temperature Stability
 - Not critical for the detector performances
 - Detector calibration should consider gas pressure variations
- Electronics power consumption and cooling
 - SALSA ASIC consumption ~ 15 mW/channel at 1.2V \rightarrow 60 W/disk
 - Air vs liquid cooling is under study at Saclay see Irakli's talk

MPGD Endcaps

Detector performance and construction plans

Charge 2

Are the plans for achieving detector performance and construction sufficiently developed and documented for the present phase of the project?

 (R,φ) vs (X,Y)

PROs	CONs	PROs	CONs	
Direct radial and azimuthal information	The linear density of the azimuthal strips increases by a factor 10 on the inner hole	The strip length does not vary much along the active	Alignment is critical	
	The radial readout hybrid FE overlaps the	area		
	active area or long flex cables should be used.	All readout FE hybrids may be located outside the	Routes to read-out connectors must be accurately studied	
	Radial strip length varies by a factor 10.	active area	, , , , , , , , , , , , , , , , , , ,	

- (X, Y) readout is preferred vs (R, φ) no FEB on the active area
- 500 μm pitch \rightarrow better than 150 μm intrinsic position resolution

Risks Mitigation

Charge 4

Are plans in place to mitigate risk of cost increases, schedule delays, and technical problems?

Main risk is related to CERN being the unique producer of μ -Rwell detector layer

Risk Mitigation: accurate planning

- Early procurement
- In-house detector assembly
- Technology transfer to external manufactures
- Person at CERN to supervise the μ -Rwell /GEM foils production
- Continuous QA tests

Spatial Resolution

The spatial resolution is strongly dependent on the impinging angle of the track =>

A not uniform resolution in the solid angle covered by the apparatus => Large systematical errors.

µTPC reconstruction

A possible solution :

- The electrons created by the ionizing particle drift towards the amplification region
- In the µTPC mode from the knowledge of the drift time and the measurement of the arrival time of electrons, the track segment in the gas gap is reconstructed
- > The fit of the analog signal gives the arrival time of drifting electrons.
- By the knowledge of the drift velocity, the 3D trajectory of the ionizing particle in the drift gap is reconstructed.

