NPS background simulations (using old code, with B.Wojtsekhowski)

V. Tadevosyan

NP meeting, Mar. 10, 2016

Motivation 1

NPS magnet status:

- > 2 versions: vertical field (VF, horizontal bend) and horizontal field (HF, vertical bend).
- Technical issues (unresolved for now) with VF at small angles.
- > Design of the HF in advanced stage, construction expected in few months.
- In order to back up the choice of magnet, simulations needed for background estimates and NPS performance for settings/conditions of the NPS experiments.

Simulation codes on hand:

- A. Custom made old Fortran code. A greatly simplified model:
 - no background production, pre-calculated spectra from P.Degtyarenko instead;
 - sampling in the angular acceptance of the calorimeter, not in the magnet's acceptance (to be changed);
 - limited angular range, up to 20 deg;
 - uniform magnetic field, single bending at the center of magnet;
 - no magnet acceptance;
 - Fast!

Motivation 2

- B. Geant4 code under development:
 - based on *Amagnet* code from G.Niculescu;
 - A BERT G4 physics model (can be changed);
 - o includes target, scat. chamber, beam pipe, magnet with field, calorimeter;
 - random crashes (may be inherited from Amagnet?);
 - slow, porting on a central machine needed.

For prompt, preliminary results decided to go with old code for now.

Calculations (as Bogdan proposed):

- energy spectra of the background in the calorimeter;
- per block energy fluxes in the calorimeter;
- hit maps of the calorimeter;
- reconstructed pi0 mass spectra (pi0 decay + background);
- varied thresholds on the hit energies, distance to calorimeter, field strength (for HF).

NPS configurations

From Bogdan's presentation on July 15 2015 NPS meeting: SIDIS π^0 (E12-13-007):

 θ_{γ} = 7.93° – 17.23°; Dmag = 1.57 m; Bdl = 0.3 Tm; Dcalo = 1.43 – 3 m. DVCS (E12-13-10):

 $\theta_{\gamma} = 6.3^{\circ} - 21.7^{\circ}$; Dcalo = 3 -- 6 m; Bdl = 0.3 Tm; Dmag - Calo = 1.43 - 4.43 m. WACS (E12-14-003):

 $\theta_{\gamma} = 11^{\circ} - 34^{\circ}$; Dmag = 1.12– 2.47 m; Bdl = 0.3 – 0.6 Tm; Dmag – Calo = 1.7– 6.15 m.

<u>Focused on</u> $\theta_{\gamma} = 6.3^{\circ}$, Dmag = 1.57 m, Bdl = 0.6 Tm (horizontal field), Dcalo = 4m. <u>Varied</u> Bdl in 0.3 – 0.6 Tm, Dcalo in 3 – 6 m.

Vertical field sweep

Energy flux (10 cm LH2, I = 1 uA, T = 100 ns, no field, 6.3deg)

hETotFlux hETotFlux Count/10MeV Count/10MeV 159776 Entries 6884619 Entries 98.03 Mean 332 Mean RMS 283.2 RMS 1196 Total (67493.1 MeV) γ (1443.5 MeV) 10 e- (65292.8 MeV) e+ (756.9 MeV) Total (5304.6 MeV) 1 10^{-1} E γ (1443.9 MeV) e-(3845.0 MeV) e+ (15.7 MeV) 10^{-1} 10^{-2} 10^{-2} E 10^{-3} 10^{-3} 10^{-4} 10^{-4} 10³ 10² 10² 10^{3} MeV MeV No field 0.3 Tm vertical field

Reduction of background energy ~10 times.

Energy flux (10 cm LH2, I = 1 uA, T = 100 ns, vertical field 0.3 Tm, 6.3 deg)

Horizontal filed vs vertical field

Energy flux (10 cm LH2, I = 1 uA, T = 100 ns, vertical field 0.3 Tm, 6.3 deg)

Energy flux (10 cm LH2, I = 1 uA, T = 100 ns, horizontal field 0.6 Tm, 6.3 deg)

Vertical field more efficient ~2 times.

Energy fluxes in the calorimeter

Energy flux (10cm LH2, I=1uA, T=100ns, no field)

Energy flux (10cm LH2, I=1uA, T=100ns, vert. field 0.3Tm)

Energy flux (10cm LH2, I=1uA, T=100ns, hor. field 0.6Tm)

Significant background reduction, hot spots at beam side.

Energy fluxes from photons and e-

Energy flux (10cm LH2, I=1uA, T=100ns, hor. field 0.6Tm) of e- only.

Energy flux (10cm LH2, I=1uA, T=100ns, hor. field 0.6Tm)

Electrons displaced, dominant. Photons more spread.

Hot spot removal : noticeable reduction in background, negligible efficiency reduction.

Calorimeter at different distances

Background reduces with distance.

Conclusions:

- reasonable results from old code, ensures confidence;
- 0.3 Tm VF is most efficient in sweeping charged background;
- 0.6 Tm HF performance is also good, a reasonably low background levels can be achieved;
- Mπ⁰ background can be lowered by sacrifice of small part of acceptance (at beam pipe side), without compromising π⁰ detection efficiency;
- detailed calculations with G4 code are needed to check these results.

Status of the G4 code:

- got new blueprints of scattering chamber from B.Metzger;
- \circ added magnetic field;
- Slow on a laptop (not a surprise);
- Random crashes (will debug).

Backup slides

Kinematics of SI pion (E12-13-007)

#	θγ	θ_{e}	D _{mag} , m	Bdl, Tm	D _{mag} -Calo,	angle range,
					m	degree
A	10.57	10.27	1.57	0.3	3-1.57	
В	16.20	11.70	1.57	0.3		
С	12.44	15.38	1.57	0.3		
D	7.93	24.15	1.57	0.3	1.43	4.7-11.1
E	16.57	15.65	1.57	0.3	1.43	
F	17.23	17.84	1.57	0.3	1.43	

Kinematics of DVCS (E12-13-10)

#	θγ	θ_{e}	D _{calo} ,m	Bdl, Tm	D _{mag} -Calo,	angle range,
	· ·				m	degree
3	16.2	11.7	3	0.3	I.43	
5	12.4	15.3	3	0.3	I.43	
7	21.7	11.7	3	0.3	1.43	
8	16.6	15.6	3	0.3	I.43	
13	6.3	27. 9	6	0.3	4.43	3.1 - 9.6
16	6.3	17.3	6	0.3	4.43	1

range of angles: $68 \text{ cm} / 300 \Rightarrow 12.8 \text{ degrees}$ range of angles: $68 \text{ cm} / 600 \Rightarrow 6.5 \text{ degrees}$

NPS Bi-weekly Meeting July 2015

Kinematics of WACS (E12-14-003) /Pion

#	θ	θ _p	D _{mag} ,m	Bdl, Tm	D _{det} ,	D _{magr} -Calo,	Bdl,Tm /
	· '	1			m	m	D _{mag} -Calo, m
4A	14.2	40. I	2.45+0.2	0.3	9.0	6.15	0.3 / (9-1.57)
4B	17.9	33.7	1.65+0.2	0.4	7.0		
4C	22.5	27.8	1.65+0.2	0.5	5.0		
4D	26.9	23.7	1.10+0.2	0.6	3.5		
4E	34.0	18.9	1.10+0.2	0.6	3.0	1.7	0.61 Tm / 1.68
5A	11.0	41.7	2.45+0.2	0.25	11.0		9.3-12.7 deg
5B	13.8	35.3	2.45+0.2	0.35	9.0		
5C	16.9	30.0	1.65+0.2	0.4	7.5		
5D	19.7	26.3	1.65+0.2	0.5	6.0		
5E	29.9	17.8	1.10+0.2	0.6	3.25	1.95	0.70 Tm / 1.68

Horizontal filed vs vertical field

Energy flux (10 cm LH2, I = 1 uA, T = 100 ns, vertical field 0.3 Tm, 6.3 deg) Energy flux (10 cm LH2, I = 1 uA, T = 100 ns, hor. field 0.3Tm, 6.3deg) hETotFlux hETotFlux Count/10MeV Count/10MeV Entries 159776 Entries 192333 641.2 Mean 332 Mean RMS 1196 RMS 1545 Total (12333.0 MeV) E γ (1460.2 MeV) E e- (10864.6 MeV) 8.1 MeV) e+ (Total (5304.6 MeV) 10 10 γ (1443.9 MeV) Ε 3845.0 MeV) e- (15.7 MeV) e+ (10^{-2} 10^{-2} 10^{-3} 10^{-3} 10 10 10³ 10² 10^{3} 10² MeV MeV 0.3 Tm vertical field 0.3 Tm horizontal field

Vertical field more efficient, ~2 *times.*